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Quiz



Quiz

Suppose we administer a survey and find that the mean income reported by the respondents (µ̂) is
45.000, with a standard error of 2.500. With a large sample, a 95% confidence interval for the mean
level of income in the population (µ) is 40.000 to 50.000.

Which of the following statements are correct?

1. The probability that µ lies within the confidence interval is either 0 or 1.
2. We can be 95% sure that µ lies between 40.000 and 50.000.
3. There is a .05 probability that µ lies outside the confidence interval
4. 95% of the confidence intervals one would draw in repeated samples will include µ.
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Introduction



What should you take home from this class today?

• A confession: We were doing Bayesian inference all along (without knowing)

• Bayesian theory of inference is more intuitive

• We meet Markov and learn what he is doing with chains

• Priors are a systematic way to incorporate auxiliary information to improve estimation

• We take a look at the implementation of a Bayesian normal regression model in Zelig
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Likelihood as a Model of Inference



Introduction

Bayesian theory of inference starts at the same place as the likelihood theory of inference

• We need a probability model P(y|θ) representing the assumed data-generating process, which
relates the observed data y to a set of unknown parameters θ = (θ1, θ2, . . . , θk).

• Take for instance a linear model
Yi ∼ N(yi|µi, σ2) stochastic component
µi = Xiβ systematic component

• Together with the assumption of independent observations we get the following probability
model with unknown parameters θ = {β, σ2}:

P(y|β, σ2) =
n∏
i=1

ϕ(
yi − Xiβ

σ
) =

n∏
i=1

1
σ
√
2π
exp{− 1

2σ2 (yi − Xiβ)2}

• Statistical inference is the process of using the facts you know to learn about the facts you
don’t. Thus, we would like to learn about the parameters that characterize the data-generating
process given the data we observe.
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Frequentist Interpretation

• Parameters θ are fixed, unknown quantities. Observed data y are realizations of a repeatable
process (hence, of a random variable Y).

• Using the same probability model ML uses the likelihood function to summarize all available
information about θ.

• The likelihood function is a function of the fixed, unknown parameters θ (= {β, σ2}).

L(β, σ2|y) ∝ P(y|β, σ2) =
n∏
i=1

ϕ(
yi − Xiβ

σ
)

=
n∏
i=1

1
σ
√
2π
exp{− 1

2σ2 (yi − Xiβ)2}

• The goal is to get θ̂ML of the unknown parameters that most likely generated the observed data
through maximizing L(·) or rather LL(·).

• For inference about the estimated parameters θ̂ML frequentists use the sampling distribution,
that results from hypothetical repeated sampling, to compute st.err. and ci (for hypothesis
testing).
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The Bayesian Theory of Inference



The Bayesian Theory of Inference

The foundational assumptions when performing Bayesian inference are different.

• Contrary to the frequentist Likelihood Theory, the assumptions behind the Bayesian Theory of
Inference are much more intuitive.

• Observed data are treated deterministically
• Unobservable parameters are treated probabilistically

• In general, all unknown quantities (θ, Y) are treated as random variables and have a joint
distribution, while all known quantities (y) are treated as fixed.

• Thus, we have the (conditional) probability: P(y|M) = P(known|unknown)
• However, we actually care about the inverse probability: P(M|y) = P(unknown|known)
• Or at least about: P(θ|y,M∗) = P(θ|y), if M = {M∗, θ} where M∗ is assumed and θ to be
estimated.

• Bayes Theorem is merely an accounting identity that relates a conditional probability to its
inverse probability (aka the rule of inverse probability).
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The Bayesian Theory of Inference

P(θ|y) = P(θ∩y)
P(y) [Def. of conditional probability]

= P(θ)P(y|θ)
P(y) [P(A ∩ B) = P(B)P(A|B)]

= P(θ)
P(y) · P(y|θ) [Remember? L(θ|y) ∝ P(y|θ)]

∝ P(θ) · L(θ|y)

• P(θ|y) is called the posterior density
• P(y|θ) is the traditional probability density (∝ likelihood)
• P(θ) is called the prior density. Here Bayes differs from likelihood
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The “Bayesian Mantra”

In plain English: The posterior is proportional to the prior times the likelihood.

P(θ|y) ∝ P(θ) · L(θ|y) [∝ P(θ) · P(y|θ)]

• Note the beauty of the Bayesian approach: The likelihood (when multiplied with a prior) can
be turned (or “inverted”) into a probability statement about θ, given the data.

• As any probability distribution, the posterior distribution can be summarized by computing
expected values, quantiles, standard deviations.

• Unlike the likelihood L(θ|y), the posterior density P(θ|y) is a real probability density. We can
derive probabilistic statements (e.g. “The probability that government A is to the left of
government B is 23 %”).

• Like the likelihood L(θ|y), the posterior density P(θ|y) is a summary estimator (i.e., once
plotted, we can discard the data given the model is correct).

• Bayesian inference obeys the likelihood principle: data only affects inferences through the
likelihood function.
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What is the prior density?

• A prior is a distribution of the parameters before having observed the data.
• It represents all prior evidence (e.g., prior research, case study evidence, auxiliary analysis)
about the parameters.

• Thus, the need to specify prior distributions for each parameter implies a formalized way of
including “other available information” in addition to the data into the analysis.

• If the prior distribution is diffuse (or non-informative), for instance let P(θ) = c a uniform
distribution where any value of θ is a priori as likely as any other, then

P(θ|y) ∝ L(θ|y)

• Thus, results of Bayesian and likelihood-based analysis coincide given diffuse priors. In this
case, θ̂ML corresponds to the mode of the posterior density (or the mean if the posterior is
symmetric).
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Posterior as Weighted Combination of Prior and Likelihood

12 THE FOUNDATIONS OF BAYESIAN INFERENCE
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Figure 1.2 Priors, Likelihoods and Posterior Densities. Each panel shows a prior density, a
likelihood, and a posterior density over a parameter θ ∈ [0, 1]. In the top two panels on the left
the posterior and the likelihood coincide, since the prior is uniform over the parameter space.

Taken from: Simon Jackman. 2009. Bayesian Analysis for the Social Sciences, John Wiley & Sons, p. 15.
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Summarizing the Posterior using the Monte Carlo Method

• Analytically summarizing the posterior distribution (as a product of distributions) is typically
not possible (although, there are conjugate priors). Thus, we have to do it numerically using
simulations.

• Monte Carlo Simulation: One can learn anything about a (posterior) distribution by repeatedly
sampling from it and empirically summarizing those draws.

• Suppose we are interested in the posterior expected value E(θ|y) =
∫
θ θP(θ|y)dθ

• If we can draw a random sequence of G draws θ(1), θ(2), . . . , θ(G) from P(θ|y), we can approximate the
posterior expected value by averaging over those draws (aka Monte-Carlo Integration), i.e.

E(θ|y) =
∫
θ
θP(θ|y)dθ ≈

1
G

G∑
g=1

θ(g)

• Similarly simulation can be used to calculate other quantities of interest such as standard deviations,
quantiles, probability that parameters take on a particular value.
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Who is Markov and what is he doing with chains?

• We need Markov Chain Monte Carlo (MCMC) methods to produce a sequence of draws that
converges to the posterior distribution (regardless of the starting values - important
diagnostic check whether convergence is achieved).

• A markov chain is a particular sequence of draws, where each draw θ(g+1) depends only on the
previous draw θ(g) (conditional independence !).

• Two algorithms are typically used in MCMC context
• Gibbs sampling
• Metropolis-Hastings
• Hamilton

• When using MCMC methods to calculate quantities of interest, one discards the first set of
“burn-in” iterations to ensure convergence of the chain, while using the remaining ones to
summarize the posterior.

• Assessing convergence is crucial. Unless the chain has reached its steady state summaries of
the posterior density cannot be trusted (similar to reaching a local vs. global maximum in the
ML-framework).
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Practical Advantages of Bayesian
Methods



Intuitive Interpretation of Findings

What is the probability that β1 falls between .56 and .96?

Taken from: Norpoth & Gschwend. 2003. “The Red-Green Victory: Against all Odds?” German Politics and Society, 21(1): 15-34.
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Intuitive Interpretation of Findings

• What is the probability that β1 falls between .56 and .96?
• The answer is: 0 or 1 - we do not know because in a frequentist world parameters are fixed and
unknown.

• Frequentist confidence intervals are constructed such that if we were to repeatedly draw from
our population, 95% of our confidence intervals (each taking different ranges) would contain
the true (population) parameter.

• Drawing repeated samples make more sense in the context of survey data rather than in the
context of administrative data.

• Asymptotic assumptions are not necessary in the Bayesian approach.
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Intuitive Interpretation of Findings - The Bayesian Way

Any quantity of interest that can be computed from the samples that generate the posterior
distribution (after convergence!) can be treated as probabilities.

• Bayesian p-value. Probability that a parameter value is positive or negative.
• 95 % Bayesian Credible Interval (BCI). Akin to a frequentist confidence interval one can also
determine the range that contains the parameter value 95% of time. Problem: BCI might not
be uniquely defined. Use 95 % Highest Probability Density Interval (HPD) instead.

• A 95 % HPD for β1 of [.56, .96] suggests that after observing the data, there is a 95 % chance that β1
falls between .56 and .96.

• Providing Bayesian credible intervals requires merely to take the appropriate percentiles of
the corresponding posterior distribution of the quantity of interest (no asymptotics required!).

• Of course, we would use a better QoI, for instance, P(incumbent gov. gets a majority)
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Incorporation of Prior Information

• When doing research we derive hypotheses, come-up with a model and gather data to test the
implications of our theory. While doing this we already accumulated substantive knowledge
from the literature, field work, journalistic accounts, anecdotal evidence, ect.

• This provides us with an intuition about the parameters of the model and how to specify the
priors.

• There is a literature on prior elicitation that shows how we can use “experts” (from agencies,
interview partners) and their rich substantive knowledge to translate this into statements
about parameter distributions to specify “ informative priors”. For a teaser, see Gill and
Walker’s (2005) JoP article on “Elicited Priors for Bayesian Model Specifications in Political
Science Research”.

• Typically “uninformative priors” are used. The stronger the prior (distributional assumptions
about the parameters prior to seeing the data) and the less information in the data (e.g., small
sample size), the more likely does the prior have an impact on the results.

• Perform a sensitivity analysis to asses how much the results change if prior changes.
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Effect of Sample Size and Priors on Posterior Distribution

28 THE FOUNDATIONS OF BAYESIAN INFERENCE
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Figure 1.8 Sequence of Posterior Densities (1). The prior remains fixed across the sequence, as
sample size increases and θ∗ is held constant. In this example, n = 6, 30, 90, 450 across the four
columns in the figure.

Taken from: Simon Jackman. 2009. Bayesian Analysis for the Social Sciences, John Wiley & Sons, p. 31. 17



Example: Incorporation of Auxiliary Information to improve Election Forecasts

54 GETTING STARTED: BAYESIAN ANALYSIS FOR SIMPLE MODELS
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Figure 2.1 Florida Election Polling. The shaded area under the posterior density represents the
posterior probability that Bush leads Gore, and is .893.

Taken from: Simon Jackman. 2009. Bayesian Analysis for the Social Sciences, John Wiley & Sons, p. 56. 18



Example: Incorporation of Auxiliary Information to improve Election Forecasts

Suppose a recent poll (N = 509) shows that Biden is leading Trump in Florida with a margin of
55 : 45 % of the two-party vote intentions. How realistic is such an early poll? We will use auxiliary
information to improve election forecasting.

• If we assume independent survey responses of respondents of a simple random sample of the
voting-age population. Let θ be the proportion ( rN ) of Floridian voters expressing a vote
intention for Biden.

• The likelihood for θ given the data is

L(θ|r = 279;N = 509) ∝ θ279 · (1− θ)509−279

• Thus, θ̂ML = r
N = 279

509 = .548 with a standard error of
√

(.548 · (1− .548))/509 = .22
• Suppose now we also have a decent state-level prediction model based on electoral returns.
This model predicts a Democratic presidential vote share in Florida of 49.1%, with a standard
error of 2.2 percentage points.
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Example: Incorporation of Auxiliary Information to improve Election Forecasts

• One can show applying Bayes rule that a binomial likelihood over r successes in n Bernoulli
trials with (unknown) success parameter θ and using a (conjugate) prior P(θ) = Beta(α, β)
leads to the following posterior density P(θ|r,n) = Beta(α∗, β∗) = Beta(α+ r, β + n− r).

• Thus, in order to use the state-level model predictions as reasonable informed prior one
needs to conceptualize them as stemming from an Beta distribution.

• We seek values of α and β of a Beta distribution such that
• E(P(θ)) = α/(α+ β) = .491 (= θ0)
• Var(P(θ)) = αβ

(α+β)2(α+β+1) = .0222 (= θ0(1− θ0)/(γ + 1)) with γ = α+ β, whereby γ can be
interpreted as the size of a hypothetical prior sample.

• One can show that the information from the prediction model is equivalent to having ran
another poll with γ ≈ 515 respondents where α ≈ 253 respondents intended to vote for Biden.

• Applying Bayes rule (given the conjugate Beta prior) yields a Beta posterior density with
parameters α∗ = 253+ 279 = 532 and β∗ = 262+ 509− 279 = 492 with a reduced posterior
mean θ̂ = .519 and a 95% HPD bound between .489 and .550.
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Example: Incorporation of Auxiliary Information to improve Election Forecasts
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!

0.40 0.45 0.50 0.55 0.60

POSTERIOR

SURVEY (LIKELIHOOD)PREVIOUS ELECTIONS (PRIOR)
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posterior probability that Bush leads Gore, and is .893.

Taken from: Simon Jackman. 2009. Bayesian Analysis for the Social Sciences, John Wiley & Sons, p. 56. 21



Bayesian Applications popular in Political Science

• Legislative Politics
• Ideal Point Models (e.g., item response models)

• Measure with uncertainty
• Small N, many parameters
• Flexible to include theory

• Voting Bloc Models (finite mixture, latent class)
• Measure with uncertainty
• Identify like-minded legislators
• Inferences about number of blocs (discrete parameters)

• Text Analysis
• Identify topics
• Identify preferences

• Political Behavior
• Hierarchical models for context effects
• Small N regarding clusters and/or time periods
• Models that require evaluating high-dimensional integrals (e.g., multivariate models, multinomial
probit)
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Software and Estimation

Existing software packages are still limited. My guess is that this will change, though.

• You can estimate this Bayesian models in R for instance using the library(Zelig) or
library(MCMCpack)

• Use the BUGS (Bayesian updating using Gibbs sampling) language, which has a R-like syntax.
• WinBUGS implementation for Windows
• JAGS implementation also for Mac, Unix and Windows
• There are interfaces to the BUGS and JAGS MCMC packages.

• ... and the new kid on the block: Stan
• Stan interfaces with the most popular data analysis languages (R, Python, shell, MATLAB, Julia, Stata)
• Runs on Mac, Unix and Windows
• Stan’s user guide provides example models and programming techniques. It also serves as an
example-driven introduction to Bayesian modeling and inference.
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Example of Bayesian Linear Regression



Bayesian Normal Regression Model

As in the OLS or ML case the Bayesian normal linear model has a familiar stochastic and
systematic component. Let ϵi = Yi − µi, then

ϵi ∼ N(0, σ2) stochastic
µi = Xiβ systematic

However, since all unknown quantities are treated as random variables in the Bayesian theory of
inference we need to have priors for the parameters β and σ2.

You are free to choose priors (and should try different ones to test the influence of priors on the
estimation results) for the parameters. Zelig implements the following priors:

β ∼ N(b0,B−1
0 )

σ2 ∼ InverseGamma( c02 ,
d0
2 )

where b0 is vector of means for k independent variables, B0 is a k× k precision matrix (inverse of
var-cov matrix), while c0

2 and
d0
2 are shape and scale parameters for σ2; c0 = d0 = .001 by default.

You can and should (!) change that.
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Implementation in Zelig

#OLS
n.out <- zelig(incvt ~ normvt + chancdec + term,

model = "normal", data = data)
#Bayesian
z.out <- zelig(incvt ~ normvt + chancdec + term,

model = "normal.bayes", data = data, burnin = 10000)
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Zelig Output

> summary(n.out)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.55054 6.61005 -0.991 0.34758
normvt 0.75845 0.10367 7.316 4.49e-05 ***
chancdec 0.38560 0.04582 8.416 1.47e-05 ***
term -1.49808 0.34495 -4.343 0.00187 **
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Zelig Output

> summary(z.out)
Call: zelig(formula = incvt ~ normvt + chancdec + term,

model = "normal.bayes", data = data, burnin = 10000)

Iterations = 10001:20000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

Mean, standard deviation, and quantiles for marginal posterior dist.
Mean SD 2.5% 50% 97.5%

(Intercept) -6.5062 7.4227 -21.0638 -6.4999 8.3827
normvt 0.7581 0.1161 0.5269 0.7586 0.9848
chancdec 0.3852 0.0523 0.2799 0.3850 0.4902
term -1.5003 0.3905 -2.2788 -1.4990 -0.7108
sigma2 2.7379 1.7331 1.0110 2.3089 7.0935
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Convergence Diagnostics: Inspecting Trace plots

For visual diagnostics use
plot(z.out$coefficients)

10000 12000 14000 16000 18000 20000

-3
-2

-1
0

1

Iterations

Trace of term

-3 -2 -1 0 1

0.
0

0.
4

0.
8

1.
2

N = 10000   Bandwidth = 0.05299

Density of term

10000 12000 14000 16000 18000 20000

0
5

10
20

Iterations

Trace of sigma2

0 5 10 15 20 25

0.
0

0.
2

0.
4

N = 10000   Bandwidth = 0.1701

Density of sigma2

28



Further Convergence Diagnostics

• Kernel density plots (a.k.a. smoothed density; histograms): Sometimes non-convergence is
reflected in multimodal distributions. In those cases let the algorithm run a bit longer until
the kernel density plot looks more bell-shaped, though not necessarily symmetric.

• Geweke diagnostic for stationarity: If chain converged, then the mean (and variance) of a
parameter’s posterior distribution from the first half of the chain will be equal to the mean
(and variance) from the second half of the chain.

• Gelman-Rubin diagnostic: Uses multiple parallel chains with dispersed initial values to test
whether they all converge to the same target distribution. Failure could indicate the presence
of a multi-mode posterior distribution (different chains converge to different local modes) or
the need to run a longer chain.
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Convergence Diagnostic Summary

• You can never prove that something has converged, you can only tell when something has not
converged.

• Coding errors might hinder convergence. Check it! Shit happens.
• Not converged yet? Let the chain run longer. Standardize you parameters.
• Convergence does not imply that you have a good model! Convergence should be the
beginning of model assessment, not the end of it.

• To assess whether the MCMC chain has converged to a stationary distribution use those
diagnostics (and others) implemented in the CODA package in R.
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Famous Last Words ...



Famous Last Words on the Final Paper

The final draft paper together with all replication material are due on June 15rd, 2022. Please
submit all files electronically to ILIAS by 10am that day. Late submissions will not be accepted.

1. Make sure that your contribution is made really clear. (Start with this already in the
introduction.)

2. Holding everything else constant, the shorter the better! (I know, this is just the opposite you
have done up to know)

3. You set the agenda! (Don’t let someone else frame the issue for you)
4. Are there further observable implications of your theory? Put them all in!
5. Raise all potential weaknesses and make an argument for why they are not so bad after all.
6. Make sure you know what the causal effect is you are interested in. Simulate quantities of
interest. Describe the scenario.

7. Does you model fit the data?
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Famous Last Words ...

Please send me your presentation by Wednesday (!), 8am next week!

1. Make sure that your contribution is made really clear.
2. Don’t present everything!
3. 3 slides (e.g., RQ, data, QoI)
4. ≤ 5 min only
5. …
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