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What should you take home from this class today?

• We will finish-up some left-overs from last week regarding Heckman models.

• We will meet multi-level models as a way to deal with multi-level data structures.
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The Heckman Model & Selection
Bias – some leftovers



Heckman Model as a particular Multiple Equation Model

• Let Yi vector for observation i (= 1, . . . ,n)
• Yi = (Y∗1i, Y2i)′ is bi-variate normal distributed with an

1. Selection equation:
y∗1i = µ1i + ui = X1iβ1 + ui, ui ∼ N(0, 1)

with an stochastic censoring mechanism (a.k.a sample selection rule)

y1i =
{

1 y∗1i> 0
0 y∗1i≤ 0

2. Outcome equation: For all selected observations i, i.e., if y∗1i > 0 one has

y2i = µ2i + ϵi = X2iβ2 + ϵi, ϵi ∼ N(0, σ22 )

whereby the error terms of both equations are correlated, i.e. 0 ̸= ρ = corr(ui, ϵi). (Note
that we get a Tobit as a special case if y∗1i = y2i)

• Thus, (check the dimensionality!)

Yi =
(
Y∗1i
Y2i

)
∼ N

[(
µ1i
µ2i

)
,

(
1 ρ

ρ σ22

)]
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.... and the Likelihood

The likelihood function is a combination of the likelihood for censored and uncensored
observations

• For y∗1i ≤ 0 all that is observed is that this event occurred. Thus, the density is the
probability Pr(y∗1i ≤ 0) that it occurred

• For y∗1i > 0 we observe y2i with a certain (conditional) probability. It is the probability
of being selected, Pr(y∗1i > 0), multiplied by the bivariate density f(y2i|y∗1i > 0).

• The likelihood function of a bivariate sample selection model is as follows:

L(β1, β2, ρ, σ22 ) =
n∏
i=1

Pr(y∗1i ≤ 0)1−y1i · {f(y2i|y∗1i > 0) · Pr(y∗1i > 0)}y1i

• One can show that the second term simplifies to a univariate normal distribution
that can be easily handled computationally. Details can be found, for instance, in
Amemiya’s Advanced Econometrics (1985: 385-7) textbook.
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Application: A Model to predict success in the Graduate Program

• Suppose we like to test whether GRE-scores predict success in terms of grades in our
PhD-program.

• Obviously, in all the application files we have GRE-scores. Grades, however, are only
available for the ones who join our program.

• Thus, the bottom of the distribution of the unobserved variable (Y∗1i), Admission
Rating of our PhD-program, is censored. The PhD selection committee only admits
those candidates and monitor their performance who rate high on the latent
Admission Rating variable.
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Application: A Model to predict success in the Graduate Program

• Suppose we have the following selection and outcome equation:
1. Selection equation:

AdmissionRating = β10 + β11GRE+ β12TOEFL+ ui, ui ∼ N(0, 1)

with a censoring mechanism (a.k.a sample selection rule)

Admission =

{
1 AdmissionRating> 0
0 AdmissionRating≤ 0

2. Outcome equation: For all enrolled (and former) students i, i.e., if AdmissionRating > 0
one has

Success = β20 + β21GRE+ β22Math+ ϵi, ϵi ∼ N(0, σ22 )

• Admitted graduate students are not representative of applicants generally. Despite
low GRE-scores applicants get admitted if they have high TOEFL-scores or because
they have large error term – i.e., their applications have qualities that are
uncorrelated with GRE or TOEFL scores (e.g., strong letter, University’s reputation).
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What if we just run an OLS for all observations we have data for?

• Group of students that were admitted because of high GRE scores are representative
of the group of applicants with high GRE scores.

• However, the group of admitted students with low GRE scores are not representative
of the group of all applicants with this score. Assuming that the selection committee
has done a good job, those admitted low-score students perform better than the
non-admitted ones.

• Thus, running regression on the selected sample might wrongly show that GRE does
not systematically predict success in graduate school.
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Identification, Interpretation and Estimation

• Selection bias models, as the Timpone-Example shows, are not bounded to have a
normally distributed stochastic component but can be in principle fit to any theory
about the selection and outcome processes.

• Identification of those processes is an issue with selection bias models, though. You
need at least one variable (and the more the better!) that only predicts selection but
not the outcome (otherwise identification hinges solely on non-linearity of the
selection equation, hence on distributional assumptions that cannot be checked
rigorously).

• Interpretation. As usual, calculate expected values, predicted probabilities and
first-differences using statistical simulations.

• You can estimate these models in R for instance using the
library(sampleSelection).
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Case Selection and Selection Bias



Selection on the Dependent Variable
Selection Bias in Comparative Politics 133
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Fig. 1. Assumed relationship between factor X and the dependent
variable

selected cases share is a cause. The other involves assuming that a relationship
(or the absence of a relationship) between variables within the selected set of
cases reflect relationships in the entire population of cases.

In the statistical literature, attention has focused on the second kind of
faulty inference (Achen 1986; King 1989). If the true relationship between
factor X and the dependent variable is that shown in figure 1, but one selects
cases in a manner that results in the examination only of cases located above
the broken line, statistical procedures carried out on the selected cases may
indicate that no relationship exists. Thus, selection on the dependent variable
often biases statistical results toward finding no relationship even when a
relationship, in fact, exists.

In nonquantitative work, however, the first kind of faulty inference is at
least as common as the second. This occurs when figure 2 shows the true
relationship, but the analyst—based on bits and pieces of information—
assumes that cases C through G are located in the lower left quadrant, and
concludes that factor X causes the outcome of interest even though, in fact, no
relationship exists. An example may make these points clearer.
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Fig. 2. An alternative possibility for the relationship between factor X and
the dependent variable
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Taken from: Geddes, Barbara. 1997. “How the Cases You Choose Affect the Answers You Get:
Selection Bias in Comparative Politics” Political Analysis 2(1): 131-50; Figure 1.

9



Selection on the Dependent Variable

Selection Bias in Comparative Politics 133

High

Dependent
Variable
(e.g.,
Growth)

Low
Low

Independent Variable
(Factor X)

High

Fig. 1. Assumed relationship between factor X and the dependent
variable

selected cases share is a cause. The other involves assuming that a relationship
(or the absence of a relationship) between variables within the selected set of
cases reflect relationships in the entire population of cases.

In the statistical literature, attention has focused on the second kind of
faulty inference (Achen 1986; King 1989). If the true relationship between
factor X and the dependent variable is that shown in figure 1, but one selects
cases in a manner that results in the examination only of cases located above
the broken line, statistical procedures carried out on the selected cases may
indicate that no relationship exists. Thus, selection on the dependent variable
often biases statistical results toward finding no relationship even when a
relationship, in fact, exists.

In nonquantitative work, however, the first kind of faulty inference is at
least as common as the second. This occurs when figure 2 shows the true
relationship, but the analyst—based on bits and pieces of information—
assumes that cases C through G are located in the lower left quadrant, and
concludes that factor X causes the outcome of interest even though, in fact, no
relationship exists. An example may make these points clearer.

High

Dependent
Variable
(e.g..
Growth)

Low

•A-
•B

• C-
D •

Low High
Independent Variable

(Factor X)

Fig. 2. An alternative possibility for the relationship between factor X and
the dependent variable

 at U
B M

annheim
 on M

ay 24, 2011
pan.oxfordjournals.org

D
ow

nloaded from
 

Taken from: Geddes, Barbara. 1997. “How the Cases You Choose Affect the Answers You Get:
Selection Bias in Comparative Politics” Political Analysis 2(1): 131-50; Figure 2.

10



Selection on the DV - Endpoints in a Time Series

148 Political Analysis

TABLE 2. Chilean Inflation, 1930-1961

Year

1930
1931
1932
1933
1934
1935
1936
1937
1938
1939

Rate

-5%
-4
26
5
9

-1
12
10
2
7

Year

1940
1941
1942
1943
1944
1945
1946
1947
1948
1949

Rate

10%
23
26
8
15
8
30
23
17
21

Year

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
I960
1961

Rate

17%
23
12
56
71
84
38
17
33
33
5
10

Source: Hirschman 1973. 160.

"political learning" as Hirschman thought, but they might not. And an alterna-
tive explanation for them—the never to be repeated election by a slim plu-
rality (31 percent of the vote) of a conservative president—was readily
available.

Conclusion

The reexamination of these three well-known arguments has shown that
choosing cases for study on the basis of their scores on the dependent variable

Inflation
Rate

Endpoinl of
Hirschman's study

70

Fig. 11. Inflation in Chile, 1930-72. (Data for 1930-61 from Hirschman
1973,160. Data for 1962-70 from Valenzuela 1978, 19. Data for 1971-72
from Ramos 1986, 14.)
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Taken from: Geddes, Barbara. 1997.“How the Cases You Choose Affect the Answers You Get:
Selection Bias in Comparative Politics” Political Analysis 2(1): 131-50; Figure 11. 11
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Quiz

You are a reviewer of a manuscript in which the author analyzes the US president’s use
of force in the conduct of American foreign policy depending on the president’s
popularity in the polls. The author coded each presidential response on a scale ranged
from 0 (compliance with an opponent’s demands) to 10 (violent military action) with nine
intermediate responses unequally spaced between 0 and 10. “Because the dependent
variable is bounded below by 0,” the author analyzes these data with a Tobit model.

What would you write in your report to the journal editor?

1. I’d reject the paper because no censoring was involved. 0 is not a value at which
certain naturally occurring values had been censored.

2. I would suggest a more appropriate model that restricted the range of y without
assuming censoring.

3. I would suggest to recode the dependent variables to be equally spaced in order to
avoid biased estimates.

4. I accept the paper because the author rightly chooses a Tobit model. 12
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Multilevel Data Structures

• Data is structured hierarchically
• Units of analysis are a subset of other units for which data is also available
• Familiar substantive hierarchies are …

• …voters nested in districts (nested in regions)
• …individual nested in associations (nested in countries)
• …countries nested in organizations
• …parties nested in governments
• …others?

• Conceptual hierarchies are …
• …time nested in states (e.g., years in countries)
• …longitudinal data: waves nested within individuals (panel)
• …measurement models: measurements nested within individuals (e.g., indicators of a
latent factor, Item – Response – Theory (IRT) models)

• “Once you know that hierarchies exist, you see them everywhere” (Kreft and de
Leeuw. 1998. Introducing Multilevel Modeling, p. 1)
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Basic Idea

• Explicit model for this data structure (instead of statistical fix)
• Model consists of modeled and unmodeled coefficients.
• Each level of analysis has its own regression model, with different assumptions
about error distribution, functional form ect.

• Ideal data situation to apply multilevel models:
data on many group-level (level-2) observations (Stegmueller, 2014 suggests J > 20),
no. of unit-level (level-1) observations can be sparse, though

• We distinguish three different scenarios:
(1) Varying Intercept Model
(2) Varying Slope Model
(3) Varying Intercept - Varying Slope Model
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(1) Varying Intercept Model

• Basic linear model with common slope for all j groups but different (aka varying)
intercepts

yij = β0j[i] + β1xi + ϵij

or equivalently as yi ∼ N(β0j[i] + β1xi, σ2y)
• j[i] indicates that case i gets a group-specific intercept j

x

y
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(2) Varying Slope Model

• Common intercept for all j groups but different (aka varying) slopes

yij = β0 + β1j[i]xi + ϵij

or equivalently as yi ∼ N(β0 + β1j[i]xi, σ2y)
• j[i] indicates that case i gets a group-specific slope j

x

y
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(3) Varying Intercept - Varying Slope Model

• Group-specific intercepts as well as group-specific slopes

yij = β0j[i] + β1j[i]xi + ϵij

or equivalently as yi ∼ N(β0j[i] + β1j[i]xi, σ2y)
• j[i] indicates that case i gets a group-specific intercept and slope j

x

y
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Multilevel Models as Partial Pooling Models

• Complete pooling:
• One model fits all, irrespective of group membership
• Variation between groups is ignored (although potentially relevant)

• No pooling:
• Separate models for each group
• Potentially to much emphasis on group differences; they look more different than they are

• Partial pooling:
• Captures similarity between groups and uniqueness within groups
• Multilevel models are a compromise between no pooling and complete pooling
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Pooling
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A Simple Multilevel Model

• Lets start by assuming the following level-1 (unit-level) model

yij = β0j[i] + β1j[i]xi + ϵij

• Now lets model the variation of level-1 regression parameters as a function of
level-2 variable z, the so-called level-2 (group-level) model

β0j = γ00 + γ01zj + δ0j and β1j = γ10 + γ11zj + δ1j
• Although the model is fully characterized (given the error-term assumptions) we can
substitute in the level-2 model into the level-1 model to derive a single-equation
expression

yij = (γ00 + γ01zj + δ0j) + (γ10 + γ11zj + δ1j)xi + ϵij

= γ00 + γ01zj + γ10xi + γ11zjxi + δ0j + δ1jxi + ϵij

• Thus, this is a regression model with a 4 parameters (constant, level-1 and level-2
effect, cross-level interaction effect) as well as 3 different error-terms (that we try to
identify separately)
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A Simple Multilevel Model

The model so far is incomplete without specifying the assumptions about the error terms

• Level-1 error term: ϵij ∼ N(0, σ2y).
Of course, if the dependent variable stems from a count, duration or binomial
process, other assumptions have to be evoked.

• Level-2 error terms are assumed to follow the following bivariate normal distribution:(
δ0j
δ1j

)
∼ N

[(
0
0

)
,

(
σ2β0 ρ σβ0σβ1

ρ σβ0σβ1 σ2β1

)]
; j = 1, . . . , J

• Finally, we need to assume that errors at both levels are uncorrelated, i.e.
Cov[δ0j, ϵij] = Cov[δ1j, ϵij] = 0.

• Moreover, one can show that the total error variance is
Var(δ0j + δ1jxi + ϵij) = σ2β0 + 2xiρ σβ0σβ1 + x2i σ2β1 + σ2y . Thus, we get a non-constant
variance (hence, heterogeneity), although ϵij, δ0j and δ1j have constant variance.
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Describing Variance Partitioning

• A useful summary statistic is the variance partitioning coefficient (aka intra-class
correlation), given that δ1j = 0 (i.e., no varying slope)

ICC =
σ2β0

σ2β0 + σ2y
=
group−level variation

total variation

• Interpretation:
• Correlation of two randomly drawn units of a group.
• Proportion of the total variance contributed by the grouping variance component.
• ICC varies between 0 and 1. When ICC = 0, the grouping variance is unimportant and the
multi-level estimator is no different from the pooled estimator.

• Use LRT to test this (because the pooled model is nested within the multi-level model)
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Application - EU support across Countries (Steenbergen & Jones, 2002)

• Individual-level factors (e.g, Ideology, Age, Income, Gender, Opinion Leadership
scale): supportijk = α0jk + Xijkαjk + ϵijk

• Party-level factors (e.g., Elite perception of party position on EU Integration):
α0jk = β00k + Zjkβ + δ0jk

• Country-level factors (e.g., length of EU membership, trade): β00k = γ000 + Tkγ + ν00k

• Include cross-level interaction: Effect of Opinion Leadership (α∗jk) should vary as a
function of party cue (i.e., we account for causal heterogeneity). Thus,
α∗jk = β∗0k + β∗1kCuejk + δ∗jk
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The Ugly TableMODELING MULTILEVEL DATA STRUCTURES 233 

national level predictors achieved statistical significance 
in the multilevel analysis. However, the OLS results sug? 
gest that both of these predictors are significant at the .01 
level. Clearly, the inferences drawn from the regression 
analysis are different than those drawn from the multi? 
level analysis. 

These differences arise precisely because the OLS 
standard errors are too small This attenuation is caused 

by ignoring the clustering of the data. The OLS analysis 
assumes that we have 6354 independent observations in 
our data. With such a large N, it is not surprising that 
most of the predictors in Table (4) attain statistical sig? 
nificance. The problem, of course, is that we do not have 
6354 independent observations. As the variance compo? 
nents in Table (4) show, considerable clustering remains 
even after controlling for the party- and country-level 
predictors?the observations are hence not (condition- 

ally) independent. To pretend that they are independent 
is to assume that one has more information than really 
exists. Thus, the OLS analysis presents too optimistic a 
view about the significance ofthe predictors. 

To continue with our exposition of the multilevel 
model, we now consider the effect of opinion leadership 
in greater detail by accounting for possible causal het? 

erogeneity. In Table 4, opinion leadership had a fixed ef? 
fect, in keeping with the theory developed by Inglehart 
(1970; Inglehart, Rabier, and Reif 1991). However, our 
own theory suggests that the effect of opinion leadership 
varies across parties as a function of party cues. Which 
of these theories are supported by the data? 

Table 5 gives the ML estimates of the multilevel 
model in (28). Consistent with our predictions, the 
cross-level interaction between party cues and opinion 
leadership is positive and statistically significant at the 
.05 level. It seems that the effect of opinion leadership is 
moderated by party cues. 

To obtain a better sense of the cue-dependence of 

opinion leadership we make some comparisons. The 
minimal value of party cues in the sample is -4.581 (on a 
mean-centered scale), indicating an anti-EU party posi? 
tion. For this position the expected effect of opinion 
leadership is -.068. Although small, this effect is opposite 
to the hypothesis that opinion leadership always en- 
hances EU support. The maximum value of party cues in 
the sample is 1.419 (again on a mean-centered scale). For 
this pro-EU party position the expected effect of opinion 
leadership is .196. This is the expected positive effect, but 
its existence clearly depends on the nature of party cues. 

Thus, it appears that the argument that the effect of 

opinion leadership is uniformly positive is incorrect. The 
multilevel statistical results clearly reveal considerable 
variation in the effect of opinion leadership across politi? 
cal parties. This suggests a different rationale for opinion 

Table 5 Model with Cross-Level Interaction 

Note: Table entries are maximum likelihood (IGLS) estimates with esti? 
mated standard errors in parentheses. 
+=p<.10,* = p<.05,** = p<.01 

leadership effects; such effects are at least partially pro- 
duced by cue-taking rather than an inherent tendency of 

opinion leaders to support the EU. 

Discussion 

In this application, we have shown the use of a three-level 
multilevel model for understanding public opinion to? 
ward the EU. We asked three questions about this topic. 
First, are the individual, party and national levels all rel? 
evant for EU support? The answer to this question is affir- 
mative. Second, can we account for the variation in EU 

support at these levels? Here we found that our predictors 

This content downloaded from 134.155.86.111 on Mon, 12 May 2014 02:12:52 AM
All use subject to JSTOR Terms and Conditions

Taken from: Steenbergen and Jones. 2002 - “Modeling Multilevel Data Structures”, American Journal
of Political Science 46(1): 218–237; Table 5. 24
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Support for EU integration is measured on 0− 8 scale.
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