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Quiz



Quiz

As dedicated experts of voting behavior in Absurdistan with its stable three-party system
you analyze a data set of N = 1000 voters, i.e. all surveyed non-voters are already
dropped. As expert of Absurdistan politics you know that Age, Education and
IssueDistance are the key to predicting vote-choice. Before running a conditional logit
model you take a look at the data and observe the following: There are 50 respondents
with missing information on Age and 50 different respondents with missing information
on Education. Finally, there are another different 50 respondents who place all parties at
the same value on the issue scale where they locate themselves. Every respondent,
though, reports her vote choice.

Which if the following statements is true?

1. There are 1000 cases (in long-format) in the data.
2. When estimating the model you use information of all cases in the data.
3. The information of 150 voters cannot be leveraged for estimation.
4. The number of cases (in long-format) used for estimating this model is 2700. 2



Intro



What should you take home from this class today?

• We talk about strategies how to deal with incompletely observed data and meet two
types of non-random selection: truncation and censoring.

• We will learn how the likelihood theory of inference is dealing with those problems
of non-random selection.

• We will get to know Tobit and Heckman models.

• We will meet multi-equation models (aka Structural Equation Models, SEM) and learn
that we might gain efficiency when we model separate single-equation models
simultaneously.

• We will learn how to estimate Heckman models as a particular multi-equation model
in order to deal with non-random selected data.
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Censored and Truncated Data



Censored and Truncated Data. What’s the difference?

Taken from: Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables. Newbury Park.: Sage, Figure 7.1.
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Incompletely Observed Data

There are two leading causes of incompletely observed data.

1. Truncation occurs when some observations on both the dependent variable as well
as the regressors are lost.

• We obtain inconsistent estimates if we run a regression when the dependent variable is
incompletely observed because the sample is not representative of the population.

• Say, you wanna predict political interest based on a student sample (non-students who
might score low are excluded)

2. Censoring occurs when data on the dependent variable is lost (or limited) but not on
the regressors. Think of it as a defect of the sample.

• Again, we obtain inconsistent parameter estimates if we run a regression when the
dependent variable is incompletely observed because the sample is not representative of
the population.

• Say, you wanna predict the amount of party-independent contributions a candidate
receives when preparing her campaign. There is likely to be a cluster at 0 Euro across
candidates (a.k.a. censored from below or left-censored) even if they got something.

• Or suppose you wanna predict income but high-income people might be top-coded in a
category, say, ≥ 100.000 Euro (a.k.a. censored from above or right-censored).

5



Say again. What’s the difference?

• Intuitively, truncation entails greater information loss than censoring.
• If the mechanism by which the data is truncated or censored is independent of the
dependent variable, run standard models.

Taken from: Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables. Newbury Park.: Sage, Figure 7.1.
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Taken from: Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables. Newbury Park.: Sage, Figure 7.2.
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Truncated Normal Model



Short Digression: Normal and Standard Normal Distributions

Suppose y ∼ N(µ, σ2I). Thus, the pdf of y with mean µ and variance σ2 is

f(y) = 1√
2πσ2

e−
(y−µ)2

2σ2

One can show that any linear transformation of the normal is itself normally distributed,
i.e. (a+ by) ∼ N(a+ bµ,b2σ2I).

For a particular transformation with a = −µ
σ and b = 1

σ , z =
y−µ
σ has a standard normal

distribution, i.e., z ∼ N(0, 1), with density

f(z) = ϕ(z) = 1√
2π
e− z2

2

Thus, a important characteristic is that one can rewrite every normal pdf f(y) as a
function of the standard normal as follows:

f(y) = 1√
2πσ2

e−
(y−µ)2

2σ2 =
1
σ

1√
2π
e−

(y−µ)2

2σ2 =
1
σ

1√
2π
e− z2

2 =
1
σ
ϕ(z)
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Truncated Normal Distribution

Taken from: Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables. Newbury Park.: Sage, Figure 7.3.
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Truncated Normal Distribution

• Let y denote the observed realizations of a continuous random variable Y. Unlike the
normal regression case, y is the incompletely observed value of a latent dependent
variable y∗.

• With truncation (at, say, τ ) we only observe y = y∗ for values above τ and lose the
remaining observations. Thus our truncated sample is a subset of a larger
population.

• Given that we lose observations, the area under the assumed normal does not
integrate to 1. Thus, we have to re-scale (normalize) the distribution by using the
information we observe to get a probability density distribution.

• Thus, given the normal pdf f(y), we get the pdf of the trancated normal distribution
as

f(y|y > τ) =
f(y)

Pr(y > τ)
=

f(y)
1− Pr(y ≤ τ)

=
1
σϕ(

y−µ
σ )

1− Φ( τ−µ
σ )
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Deriving the Likelihood Function of a Truncated Normal

Let f(y) be the pdf of a normal random variable (truncated from below),

f(y|y > τ) =
f(y)

Pr(y > τ)
=

1
σϕ(

y−µ
σ )

1− Φ( τ−µ
σ )

Thus, the log-likelihood contribution Li of observation i is

lnLi = ln( 1
σ
ϕ(
yi − µi

σ
))− ln(1− Φ(

τ − µi
σ

))

Then summing-up all N individual contributions assuming independent realizations and
µi = Xiβ gives us the log-likelihood.

lnL(β, σ) =
∑
i∈N

(ln( 1
σ
ϕ(
yi − µi

σ
))− ln(1− Φ(

τ − µi
σ

)))

=
∑
i∈N

(ln( 1
σ
ϕ(
yi − Xiβ

σ
))− ln(1− Φ(

τ − Xiβ
σ

)))

= −N2 ln(2πσ
2)− 1

2σ2
N∑
i=1

(yi − Xiβ)2 −
N∑
i=1

(ln(1− Φ(
τ − Xiβ

σ
)))
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Tobit Model



Tobit Model

• Let Y∗ be a continuous unobserved variable
• Define the Tobit model through its stochastic and systematic component

Y∗i ∼ N(y∗i |µi, σ2)
µi = Xiβ

with a censoring mechanism (a.k.a sample selection rule):

yi =
{
y y∗>τ

τy y∗≤ τ

Observations with values at or below τ are not observed directly. Instead they are
set to τy

• Finally, lets assume independent realizations (i.e., censored and uncensored
observations are independent from one another).
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Deriving the Likelihood Function of a Tobit

When a distribution is censored on the left, observations with values at or below τ are set to τy.
Thus, there are two types of observations

• Uncensored observations, i.e. when y∗ > τ . We take the product over those observations as in
the OLS-case (parameterized as a function of ϕ)

• Censored observations, i.e. when y∗ ≤ τ . All we know for those observations is
Pr(y∗ ≤ τ) = Φ( τ−µi

σ
) = 1− Φ(µi−τ

σ
)

Let di an indicator scoring 1 if ith observation is uncensored. Thus, the likelihood function of the
Tobit (censored normal) model is a mixture of censored and uncensored obserations

L =
∏
i∈N

(
1
σ
ϕ(
yi − µi

σ
))di · (1− Φ(

µi − τ

σ
))1−di

=
∏
i∈N

(
1
σ
ϕ(
yi − Xiβ

σ
))di · (1− Φ(

Xiβ − τ

σ
))1−di

Thus, taking the log yields

lnL(β, σ) =
N∑
i=1

[di(−ln(
√
2πσ2)− 1

2σ2 (yi − Xiβ)2) + (1− di)ln(1− Φ(
Xiβ − τ

σ
))] 13



Interpretation and Estimation

As usual, take predicted probabilities, expected values or first differences. Your
quantities of interest can be summarized as …

• …point estimates, by averaging the simulations.
• …confidence intervals, by sorting the simulations and taking the 2.5th and 97.5th
percentile values for a 95% confidence interval for instance.

• …or standard errors, by taking the standard deviation of the simulations.

In order to communicate your results, your summarized simulations of the quantities of
interest can be …

• …presented in the text as a number or as a table.
• …displayed as histograms, density estimates or in other graphs (e.g., ternary plot) to
summarize the full sampling (or posterior) density.

You can also estimate this model in R for instance using the library(Zelig).
14



Heckman as Extension of Tobit



Assumptions and Extensions of the Tobit Model

• The basic Tobit model can be easily coded-up to account for right-censoring or even
for left- and right-censoring (with, in this case, three types of observations that
make-up the likelihood: left-censored, uncensored and right-censored observations)

• Given the stochastic component of the model, homoskedasticity is assumed. If the
errors are heteroskedastic, though, you need to model them (through parameterizing
the variance function, e.g., as σ2i = eZiγ) in order to get consistent ML estimates
assuming correct specification of σ2i .

• Tobit-type models need not to be constructed based on the normal distribution.
Other assumptions about the stochastic component are conceivable, e.g., Poisson to
model (censored) count processes (see King 1989, chapter 9).

• For Tobit models we cannot distinguish the data generating processes that drives
the censoring and the dependent variable. Sample selection models (Heckman), a
generalization of the Tobit model, are built on the idea that those two process can
be separately modeled.
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From Tobit to Heckman

• For Heckman models we assume that we can distinguish, and consequently,
separately model, the data generating processes that drives the censoring (selection
equation) and the dependent variable (outcome equation).

• Selection bias effects occur if unobserved factors, that influence which cases get
selected into the sample (represented as error term of the selection equation), are
correlated with unobserved factors influencing outcomes (represented as error term
of the outcome equation) in the selected sample (akin to omitted variable bias).

• However, there might be variables that affect whether an observation is censored
(i.e., selected into the sample) without determining the outcome. Hence, no bias!

• Whether there is selection bias or not, more generally, think of this as a strategy of
how two simultaneous processes can be modeled at once. This is called a
system-of-equations (in the Heckman case we have a bivariate dependent variable
Yi = (Y1i, Y2i)′ consisting of two equations that are estimated simultaneously).
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Take the voter-turnout-example of Timpone (1998)

• In the US you need to register first before you are eligible to vote (there is variance
across states!). Thus registered voters are potentially a self-selected population.

• Outcome equation (who turns out to vote?) specifies standard kitchen-sink variables
to model turnout.

• Selection equation (who is registered to vote?) includes variables to operationalize
administrative barriers (e.g. closing time) in addition to standard kitchen-sink
variables previously thought to affect turnout.

• Given that two processes are modeled simultaneously and the DV of each process is
dichotomous, the dependent variable Yi = (Y1i, Y2i)′ of this system-of-2-equations is
bivariate. Hence, Timpone estimates a bivariate probit model that allows the error
terms to be correlated.
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Timpone (1998, table 1)
American Political Science Review Vol. 92, No. 1 

TABLE 1. Pooled Turnout Models for Full Electorate, 1980-88 
Single Model Selection Bias Model 

Variable Turnout Registration Turnout 
Intercept -2.1467** (.1838) -1.9678** (.2118) .1824 (.6056) 
Administrative Barriers 

Closing date -.0066* (.0029) -.0078* (.0031) 
Purge records .0171* (.0086) .0295** (.0090) 

Demographics 
South -.3788** (.0543) -.3274** (.0567) -.2302* (.0944) 
Age .0130** (.0019) .01 27** (.0022) .0064 (.0033) 
Age-squared - .0002* (.0001) - .0001 (.0001) - .0002 (.0001) 
Education .0973** (.0108) .1031** (.0126) .0366 (.0202) 
Race (black) -.0843 (.0803) .1041 (.0891) -.2910** (.1122) 
Gender (female) -.0433 (.0496) - .0641 (.0598) .0059 (.0724) 
Income .0035* (.0014) .0046** (.0017) .0003 (.0021) 
Time in home .0129** (.0031) .0136** (.0036) .0070 (.0042) 

Social Connectedness 
Church attendance .5765** (.0678) .4511 ** (.0735) .4739** (.1204) 
Group membership .1477** (.0552) .1512** (.0580) .0628 (.0861) 
Marital status .1842** (.0535) .0827 (.0601) .2390** (.0725) 
Time in home .0010 (.0018) .0039 (.0021) -.0038 (.0023) 
Home ownership .2731** (.0591) .3210** (.0595) .0115 (.0973) 

Political Attitudes: General 
External efficacy .4884** (.0882) .5139** (.0949) .2075 (.1372) 
Internal efficacy .1721** (.0557) .1473* (.0632) .1231 (.0795) 
Party differential .1047* (.0496) .1193* (.0503) .0171 (.0693) 
Strength of party identification .1607** (.0263) .1689** (.0268) .0585 (.0469) 
Trust in government -.1081 (.1090) -.1841 (.1216) .0413 (.1503) 

Political Attitudes: Election Specific 
Candidate differential .0044** (.0011) .0036** (.0012) .0033* (.0016) 
Candidate satisfaction -.1032 (.0624) -.0459 (.0663) -.1361 (.0839) 

RHO - .3550 (.3937) 
n 3598 3598 
LLF initial -2493.9 -4326.6 
LLF final -1896.2 -2588.4 
Note: The dependent variables in these models are Validated Registration and Validated Vote. The full sample size of 3,598 is composed of 954 
nonregistrants, 343 registered nonvoters, and 2,301 voters. The administrative barriers were not included in the second stage of the selection bias model. 
Up < .05, **p < .01. Standard errors are in parentheses (bootstrapped estimates for the selection bias models). 

two stages. In fact, many of the conclusions resulting 
from traditional turnout models primarily reflect the 
relationships distinguishing between registrants and 
nonregistrants (Erikson 1981, Uhlaner 1989). By col- 
lapsing opposing influences in the two stages, it is not 
possible to disentangle where forces are exerted, and 
substantive relationships can be masked. This is clearly 
evident with race, which is neither substantively nor 
statistically significant in the traditional unitary model; 
once the process is disentangled, however, important 
relationships are revealed. Thus, if one is interested in 
fully understanding individual-level behavior, adequate 
specification of the structural process is clearly neces- 
sary. 

Table 1 not only shows the usefulness of separating 
the acts of registering and going to the polls but also 
provides important information about the relationship 
between the two stages. The correlation between the 
two equations in the selection bias model is -.355, 
which is substantively meaningful, though modest and 
not statistically significant.9 A negative correlation sug- 

9 While the fully specified selection bias models presented in the text 
are consistent with those run with more constraints, the correlation's 

gests that nonregistrants would be more likely to go to 
the polls, if they were eligible to do so, than those who 
are registered but did not vote. 

In order to understand electoral behavior in the two 
stages, it is necessary to examine the effects of the 
forces in the model. Although the estimation proce- 
dure is more complex, the parameters can be treated as 
standard probit estimates. Because probit models are 
not linear and additive, the coefficients presented in 
Table 1 cannot be substantively compared, since the 
influence of each variable is dependent on the values of 
the others. Setting all other variables to their mean 
value (or base level for dichotomous variables) allows 
comparison of the effect of each variable on the 
probability of registering and voting (King 1989). 

Table 2, which presents the relative effects of the 

standard errors were more influenced by specification. While the 
correlation coefficients were insignificant in these fully specified 
models, in models with more constraints and fewer variables, they 
were of similar substantive magnitude (although slightly larger in 
some constrained models) but statistically significant. This further 
highlights the importance of conducting the selection bias estimation 
in less fully specified models. 

149 
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Multiple Equation Models



Multiple Equation Models: Why should we care?

• In order to understand Heckman models we need to first understand what
multi-equation models are.

• We actually have seen already an example of a bivariate (i.e., 2-equation) model
early in the semester. Remember?

• Franklin, Charles H. 1991. “Eschewing Obfuscation? Campaigns and the Perception of
Senate Incumbents”. American Political Science Review 85(4): 1193-1214.

• We can gain some efficiency if we model simultaneous processes through a
multi-equation set-up.

• If we wanna model recursive processes (e.g., Are certain institutions a cause or a
consequence of a country’s economic performance?) we need a multi-equation
set-up as well (e.g., 2SLS, IV estimation, ect.).

• Modeling processes simultaneously is, of course, no free lunch. Specification errors
in one equation bias estimates of other equations in the system as well.
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Introduction to Multiple Equation Models

• Let Yi be a N× 1 vector for observation i (= 1, . . . ,n)
• Yi is jointly (N-variate) distributed with a stochastic component

Yi ∼ f(yi|θi, α)

• θi is a N× 1 parameter vector, while α is typically a N× N matrix
• N systematic components are defined as (Example?):

θ1i = g1(X1i, β1)
θ2i = g2(X2i, β2)

...
θNi = gN(XNi, βN)

• This model differs from N separate equation-by-equation models if the elements of
Yi are (conditional on X) correlated (i.e., stochastically dependent) or share
parameters (e.g., a constraint such that β1 = β2)
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Bivariate Normal Distribution, i.e. N = 2

Suppose you estimate two normal regressions simultaneously …

Yi =
(
Y1i
Y2i

)
∼ N

[(
µ1i
µ2i

)
,

(
σ21 ρ

ρ σ22

)]
7.1. INTRODUCTION 97

Figure 7.1: Density plots for the bivariate normal distribution with differing corre-
lations between variables.

(a) ρ = 0.0 (b) ρ = 0.5 (c) ρ = 0.99

Accordingly, we need a bivariate joint distribution. The most common is the

bivariate normal distribution, which jointly describes for two standard-normally dis-

tributed variables. Here we describe this in terms of the φ(u1, u2):

φ(u1, u2) =
1

2πσu1σu2

�
1− ρ2

exp

�
−1

2

�
u2

1 + u2
2 − 2ρu1u2

1− ρ2

��
(7.3)

where ρ is a “correlation parameter” capturing the extent to which uis are correlated.

Figure 7.1 illustrates the probability density function for the bivariate normal

distribution with three different levels of correlation between the two variables.

These were generated by the multivariate normal distribution in R:

library(MASS)
set.seed(321)
x.y.zero<-mvrnorm(n=10000, mu=c(0,0), Sigma=matrix(c(1,.0,.0,1),

ncol=2), empirical=T)
x<-x.y.zero[,1]
y<-x.y.zero[,2]
f<-kde2d(x,y,n=25) # generates a density that is smoothed in two dimensions
pdf(file="bnd0.pdf",height=5,width=5,onefile=T,family="Times")
persp(f$x,f$y,f$z,shade=.3, theta = 120, phi = 35,box=F,

expand = .3, col = "slategray1",
zlab="Density",xlab="",ylab="")

If ρ = 0, the two variables (or errors) are independent, and the Φ2 reduces to

two separate standard normal distributions. If ρ �= 0, the two variables/errors will

be correlated and the probability of one will be dependent on the probability of the

other.

We can use the Φ2 distribution to estimate bivariate probit models, normally by

assuming that:

{u1i, u2i} ∼ φ2(0, 0, 1, 1, ρ)

ρ captures the degree to which both error terms are correlated. The uncertainty of a
model’s prediction (quantity-of-interest) depends also on the other model’s error term
(if ρ > 0). Separate estimation is inefficient if ρ > 0. 21



The Heckman Model



Heckman Model as a particular Multiple Equation Model

• Let Yi vector for observation i (= 1, . . . ,n)
• Yi = (Y∗1i, Y2i)′ is bi-variate normal distributed with an

1. Selection equation:
y∗1i = µ1i + ui = X1iβ1 + ui, ui ∼ N(0, 1)

with an stochastic censoring mechanism (a.k.a sample selection rule)

y1i =
{

1 y∗1i> 0
0 y∗1i≤ 0

2. Outcome equation: For all selected observations i, i.e., if y∗1i > 0 one has

y2i = µ2i + ϵi = X2iβ2 + ϵi, ϵi ∼ N(0, σ22 )

whereby the error terms of both equations are correlated, i.e. 0 ̸= ρ = corr(ui, ϵi). (Note
that we get a Tobit as a special case if y∗1i = y2i)

• Thus, (check the dimensionality!)

Yi =
(
Y∗1i
Y2i

)
∼ N

[(
µ1i
µ2i

)
,

(
1 ρ

ρ σ22

)]
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.... and the Likelihood

The likelihood function is a combination of the likelihood for censored and uncensored
observations

• For y∗1i ≤ 0 all that is observed is that this event occurred. Thus, the density is the
probability Pr(y∗1i ≤ 0) that it occurred

• For y∗1i > 0 we observe y2i with a certain (conditional) probability. It is the probability
of being selected, Pr(y∗1i > 0), multiplied by the bivariate density f(y2i|y∗1i > 0).

• The likelihood function of a bivariate sample selection model is as follows:

L(β1, β2, ρ, σ22 ) =
n∏
i=1

Pr(y∗1i ≤ 0)1−y1i · {f(y2i|y∗1i > 0) · Pr(y∗1i > 0)}y1i

• One can show that the second term simplifies to a univariate normal distribution
that can be easily handled computationally. Details can be found, for instance, in
Amemiya’s Advanced Econometrics (1985: 385-7) textbook.
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Application: A Model to predict success in the Graduate Program

• Suppose we like to test whether GRE-scores predict success in terms of grades in our
PhD-program.

• Obviously, in all the application files we have GRE-scores. Grades, however, are only
available for the ones who join our program.

• Thus, the bottom of the distribution of the unobserved variable (Y∗1i), Admission
Rating of our PhD-program, is censored. The PhD selection committee only admits
those candidates and monitor their performance who rate high on the latent
Admission Rating variable.

24



Application: A Model to predict success in the Graduate Program

• Suppose we have the following selection and outcome equation:
1. Selection equation:

AdmissionRating = β10 + β11GRE+ β12TOEFL+ ui, ui ∼ N(0, 1)

with a censoring mechanism (a.k.a sample selection rule)

Admission =

{
1 AdmissionRating> 0
0 AdmissionRating≤ 0

2. Outcome equation: For all enrolled (and former) students i, i.e., if AdmissionRating > 0
one has

Success = β20 + β21GRE+ β22Math+ ϵi, ϵi ∼ N(0, σ22 )

• Admitted graduate students are not representative of applicants generally. Despite
low GRE-scores applicants get admitted if they have high TOEFL-scores or because
they have large error term – i.e., their applications have qualities that are
uncorrelated with GRE or TOEFL scores (e.g., strong letter, University’s reputation).

25



What if we just run an OLS for all observations we have data for?

• Group of students that were admitted because of high GRE scores are representative
of the group of applicants with high GRE scores.

• However, the group of admitted students with low GRE scores are not representative
of the group of all applicants with this score. Assuming that the selection committee
has done a good job, those admitted low-score students perform better than the
non-admitted ones.

• Thus, running regression on the selected sample might wrongly show that GRE does
not systematically predict success in graduate school.
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Identification, Interpretation and Estimation

• Selection bias models, as the Timpone-Example shows, are not bounded to have a
normally distributed stochastic component but can be in principle fit to any theory
about the selection and outcome processes.

• Identification of those processes is an issue with selection bias models, though. You
need at least one variable (and the more the better!) that only predicts selection but
not the outcome (otherwise identification hinges solely on non-linearity of the
selection equation, hence on distributional assumptions that cannot be checked
rigorously).

• Interpretation. As usual, calculate expected values, predicted probabilities and
first-differences using statistical simulations.

• You can estimate these models in R for instance using the
library(sampleSelection).
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Selection on the Dependent Variable
Selection Bias in Comparative Politics 133
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High

Fig. 1. Assumed relationship between factor X and the dependent
variable

selected cases share is a cause. The other involves assuming that a relationship
(or the absence of a relationship) between variables within the selected set of
cases reflect relationships in the entire population of cases.

In the statistical literature, attention has focused on the second kind of
faulty inference (Achen 1986; King 1989). If the true relationship between
factor X and the dependent variable is that shown in figure 1, but one selects
cases in a manner that results in the examination only of cases located above
the broken line, statistical procedures carried out on the selected cases may
indicate that no relationship exists. Thus, selection on the dependent variable
often biases statistical results toward finding no relationship even when a
relationship, in fact, exists.

In nonquantitative work, however, the first kind of faulty inference is at
least as common as the second. This occurs when figure 2 shows the true
relationship, but the analyst—based on bits and pieces of information—
assumes that cases C through G are located in the lower left quadrant, and
concludes that factor X causes the outcome of interest even though, in fact, no
relationship exists. An example may make these points clearer.
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Fig. 2. An alternative possibility for the relationship between factor X and
the dependent variable
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Taken from: Geddes, Barbara. 1997. “How the Cases You Choose Affect the Answers You Get:
Selection Bias in Comparative Politics” Political Analysis 2(1): 131-50; Figure 1.
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Fig. 2. An alternative possibility for the relationship between factor X and
the dependent variable
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TABLE 2. Chilean Inflation, 1930-1961

Year

1930
1931
1932
1933
1934
1935
1936
1937
1938
1939

Rate

-5%
-4
26
5
9

-1
12
10
2
7

Year

1940
1941
1942
1943
1944
1945
1946
1947
1948
1949

Rate

10%
23
26
8
15
8
30
23
17
21

Year

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
I960
1961

Rate

17%
23
12
56
71
84
38
17
33
33
5
10

Source: Hirschman 1973. 160.

"political learning" as Hirschman thought, but they might not. And an alterna-
tive explanation for them—the never to be repeated election by a slim plu-
rality (31 percent of the vote) of a conservative president—was readily
available.

Conclusion

The reexamination of these three well-known arguments has shown that
choosing cases for study on the basis of their scores on the dependent variable

Inflation
Rate

Endpoinl of
Hirschman's study

70

Fig. 11. Inflation in Chile, 1930-72. (Data for 1930-61 from Hirschman
1973,160. Data for 1962-70 from Valenzuela 1978, 19. Data for 1971-72
from Ramos 1986, 14.)
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