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Quiz



As dedicated experts of voting behavior in Absurdistan with its stable three-party system
you analyze a data set of N = 1000 voters, i.e. all surveyed non-voters are already
dropped. As expert of Absurdistan politics you know that Age, Education and
IssueDistance are the key to predicting vote-choice. Before running a conditional logit
model you take a look at the data and observe the following: There are 50 respondents
with missing information on Age and 50 different respondents with missing information
on Education. Finally, there are another different 50 respondents who place all parties at
the same value on the issue scale where they locate themselves. Every respondent,
though, reports her vote choice.

Which if the following statements is true?

1. There are 1000 cases (in long-format) in the data.

2. When estimating the model you use information of all cases in the data.

3. The information of 150 voters cannot be leveraged for estimation.

4. The number of cases (in long-format) used for estimating this model is 2700.



Intro



What should you take home from this class today?

- We talk about strategies how to deal with incompletely observed data and meet two
types of non-random selection: truncation and censoring.

- We will learn how the likelihood theory of inference is dealing with those problems
of non-random selection.

- We will get to know Tobit and Heckman models.

- We will meet multi-equation models (aka Structural Equation Models, SEM) and learn
that we might gain efficiency when we model separate single-equation models
simultaneously.

- We will learn how to estimate Heckman models as a particular multi-equation model
in order to deal with non-random selected data.



Censored and Truncated Data



Censored and Truncated Data. What's the difference?
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Taken from: Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables. Newbury Park.: Sage, Figure 7..



Incompletely Observed Data

There are two leading causes of incompletely observed data.

1. Truncation occurs when some observations on both the dependent variable as well
as the regressors are lost.

- We obtain inconsistent estimates if we run a regression when the dependent variable is
incompletely observed because the sample is not representative of the population.

- Say, you wanna predict political interest based on a student sample (non-students who
might score low are excluded)

2. Censoring occurs when data on the dependent variable is lost (or limited) but not on
the regressors. Think of it as a defect of the sample.

- Again, we obtain inconsistent parameter estimates if we run a regression when the
dependent variable is incompletely observed because the sample is not representative of
the population.

- Say, you wanna predict the amount of party-independent contributions a candidate
receives when preparing her campaign. There is likely to be a cluster at 0 Euro across
candidates (a.k.a. censored from below or left-censored) even if they got something.

- Or suppose you wanna predict income but high-income people might be top-coded in a
category, say, > 100.000 Euro (a.k.a. censored from above or right-censored).



Say again. What's the difference?

- Intuitively, truncation entails greater information loss than censoring.

- If the mechanism by which the data is truncated or censored is independent of the
dependent variable, run standard models.
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Taken from: Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables. Newbury Park.: Sage, Figure 7..



Panel A: Regression without Censoring
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Taken from: Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables. Newbury Park.: Sage, Figure 7.2.



Truncated Normal Model



Short Digression: Normal and Standard Normal Distributions

Suppose y ~ N(u, a?1). Thus, the pdf of y with mean p and variance o2 is

One can show that any linear transformation of the normal is itself normally distributed,
i.e. (a+ by) ~ N(a+ bu, b*a?).

For a particular transformation with a = —£ and b = % Z= V’T“ has a standard normal
distribution, i.e., z ~ N(0, 1), with density
1 2
) =¢(2) = —e" 7
f0)=02) = =

Thus, a important characteristic is that one can rewrite every normal pdf f(y) as a
function of the standard normal as follows:

f(y) 1 ei(Y—/;r)z 1 1 ei(v—:;)z 1 1 ei% 1 (/5(2)
= 20 = — — 20 = —— = —
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Truncated Normal Distribution
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Figure 7.3. Normal Distribution With Truncation and Censoring

Taken from: Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables. Newbury Park.: Sage, Figure 7.3.



Truncated Normal Distribution

- Let y denote the observed realizations of a continuous random variable Y. Unlike the
normal regression case, y is the incompletely observed value of a latent dependent
variable y*.

- With truncation (at, say, 7) we only observe y = y* for values above  and lose the
remaining observations. Thus our truncated sample is a subset of a larger
population.

- Given that we lose observations, the area under the assumed normal does not
integrate to 1. Thus, we have to re-scale (normalize) the distribution by using the
information we observe to get a probability density distribution.

- Thus, given the normal pdf f(y), we get the pdf of the trancated normal distribution
as

vy  — fyy e(H)
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Deriving the Likelihood Function of a Truncated Normal

Let f(y) be the pdf of a normal random variable (truncated from below),
fly)  _ ge(FH)

Priy>1) 11— d(=H)

Thus, the log-likelihood contribution L; of observation i is

)
g g g

Then summing-up all N individual contributions assuming independent realizations and
i = X;3 gives us the log-likelihood.
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Tobit Model




- Let Y* be a continuous unobserved variable
- Define the Tobit model through its stochastic and systematic component

Vi~ Nl o?)
pi = XiB
with a censoring mechanism (a.k.a sample selection rule):
oy oyt
= { T Y'<T

Observations with values at or below 7 are not observed directly. Instead they are
setto 7y

- Finally, lets assume independent realizations (i.e., censored and uncensored
observations are independent from one another).



Deriving the Likelihood Function of a Tobit

When a distribution is censored on the left, observations with values at or below 7 are set to 7.
Thus, there are two types of observations

- Uncensored observations, i.e. when y* > 7. We take the product over those observations as in
the OLS-case (parameterized as a function of ¢)

- Censored observations, i.e. when y* < 7. All we know for those observations is
Priy” < 7) = o(H) =1- &(57)

Let d; an indicator scoring 1if i observation is uncensored. Thus, the likelihood function of the
Tobit (censored normal) model is a mixture of censored and uncensored obserations

e (R R T
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Thus, taking the log yields

InL(8,0) = S ld(~In(v2ro?) — 55 (i~ %B)%) + (1~ d)in(1 — o2 =Ty .

i=1



Interpretation and Estimation

As usual, take predicted probabilities, expected values or first differences. Your
quantities of interest can be summarized as ...

- ..point estimates, by averaging the simulations.
- ..confidence intervals, by sorting the simulations and taking the 2.5th and 97.5th
percentile values for a 95% confidence interval for instance.

- ..or standard errors, by taking the standard deviation of the simulations.

In order to communicate your results, your summarized simulations of the quantities of
interest can be ...

- ..presented in the text as a number or as a table.

- ..displayed as histograms, density estimates or in other graphs (e.g, ternary plot) to
summarize the full sampling (or posterior) density.

You can also estimate this model in R for instance using the library(Zelig).
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Heckman as Extension of Tobit




Assumptions and Extensions of the Tobit Model

- The basic Tobit model can be easily coded-up to account for right-censoring or even
for left- and right-censoring (with, in this case, three types of observations that
make-up the likelihood: left-censored, uncensored and right-censored observations)

- Given the stochastic component of the model, homoskedasticity is assumed. If the
errors are heteroskedastic, though, you need to model them (through parameterizing
the variance function, e.g, as o7 = e47) in order to get consistent ML estimates
assuming correct specification of 7.

- Tobit-type models need not to be constructed based on the normal distribution.
Other assumptions about the stochastic component are conceivable, e.g., Poisson to
model (censored) count processes (see King 1989, chapter 9).

- For Tobit models we cannot distinguish the data generating processes that drives
the censoring and the dependent variable. Sample selection models (Heckman), a
generalization of the Tobit model, are built on the idea that those two process can
be separately modeled.



From Tobit to Heckman

- For Heckman models we assume that we can distinguish, and consequently,
separately model, the data generating processes that drives the censoring (selection
equation) and the dependent variable (outcome equation).

- Selection bias effects occur if unobserved factors, that influence which cases get
selected into the sample (represented as error term of the selection equation), are
correlated with unobserved factors influencing outcomes (represented as error term
of the outcome equation) in the selected sample (akin to omitted variable bias).

- However, there might be variables that affect whether an observation is censored
(i.e., selected into the sample) without determining the outcome. Hence, no bias!

- Whether there is selection bias or not, more generally, think of this as a strategy of
how two simultaneous processes can be modeled at once. This is called a
system-of-equations (in the Heckman case we have a bivariate dependent variable
Y; = (Y4;, Y2;)" consisting of two equations that are estimated simultaneously).



urnout-example of Timpone (1998)

- In the US you need to register first before you are eligible to vote (there is variance
across states!). Thus registered voters are potentially a self-selected population.

- Outcome equation (who turns out to vote?) specifies standard kitchen-sink variables
to model turnout.

- Selection equation (who is registered to vote?) includes variables to operationalize
administrative barriers (e.g. closing time) in addition to standard kitchen-sink
variables previously thought to affect turnout.

- Given that two processes are modeled simultaneously and the DV of each process is
dichotomous, the dependent variable Y; = (Y, Y5;)" of this system-of-2-equations is
bivariate. Hence, Timpone estimates a bivariate probit model that allows the error
terms to be correlated.



Timpone (1998, table 1)

TABLE 1. Pooled Turnout Models for Full Electorate, 1980-88

Single Model Selection Bias Model
Variable Turnout Registration Turnout
Intercept —2.1467"* (.1838) —1.9678™ (2118) 1824 (.6056)
Administrative Barriers
Closing date —.0066* (.0029) —.0078" (.0031) —
Purge records .0171* (.0086) .0295™ (.0090) —
Demographics
South —.3788™ (.0543) —3274" (.0567) —.2302* (.0944)
Age .0130™ (.0019) 0127+ (.0022) 0064 (.0033)
Age-squared —.0002* (.0001) —.0001 (.0001) —.0002 (.0001)
Education .0973* (.0108) .1031** (.0126) .0366 (.0202)
Race (black) —.0843 (.0803) 1041 (.0891) —.2910™ (1122)
Gender (female) —.0433 (.0496) —.0641 (.0598) .0059 (.0724)
Income .0035* (.0014) .0046** (.0017) ,0003 (.0021)
Time in home .0129** (.0031) .0136™ (.0036) 0070 (.0042)
Social Connectedness
Church attendance .5765™ (.0678) .4511* (.0735) .4739™ (.1204)
Group membership 1477 (.0552) 1512* (.0580) 0628 (.0861)
Marital status 1842 (.0535) 0827 (.0601) 2390 (.0725)
Time in home 0010 (.0018) 0039 (.0021) —.0038 (.0023)
Home ownership .2731* (.0591) .3210™ (.0595) 0115 (.0973)
Political Attitudes: General
External efficacy 4884 (.0882) 5139 (.0949) 2075 (.1372)
Internal efficacy 1721** (.0557) .1473* (.0632) 1231 (.0795)
Party differential 1047* (.0496) 1193* (.0503) 0171 (.0693)
Strength of party identification .1607** (.0263) .1689* (.0268) .0585 (.0469)
Trust in government —.1081 (.1090) —.1841 (.1216) .0413 (.1503)
Political Attitudes: Election Specific
Candidate differential .0044** (.0011) .0036* (.0012) .0033* (.0016)
Candidate satisfaction —.1032 (.0624) —.0459 (.0663) —.1361 (.0839)
—.3550 (.3937)
n 3598 3598
LLF initial —2493.9 —4326.6
LLF final —1896.2 —2588.4
Note: The dependent variables in these models are Validated Registration and Validated Vote. The full sample size of 3,598 is composed of 954
nonregistrants, 343 registered nonvoters, and 2,301 voters. The administrative barriers were not included in the second stage of the selection bias model. 18

*p < .05, *p < .01. Standard errors are in parentheses (bootstrapped estimates for the selection bias models).




Multiple Equation Models




Multiple Equation Models: Why should we care?

- In order to understand Heckman models we need to first understand what
multi-equation models are.

- We actually have seen already an example of a bivariate (i.e., 2-equation) model
early in the semester. Remember?

- Franklin, Charles H. 1991. “Eschewing Obfuscation? Campaigns and the Perception of
Senate Incumbents”. American Political Science Review 85(4): 1193-1214.

- We can gain some efficiency if we model simultaneous processes through a
multi-equation set-up.

- If we wanna model recursive processes (e.g.,, Are certain institutions a cause or a
consequence of a country’s economic performance?) we need a multi-equation
set-up as well (e.g., 2SLS, IV estimation, ect.).

- Modeling processes simultaneously is, of course, no free lunch. Specification errors
in one equation bias estimates of other equations in the system as well.
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Introduction to Multiple Equation Models

- Let Y; be a N x 1 vector for observation i (=1,...,n)
- Y;is jointly (N-variate) distributed with a stochastic component
Yi ~ fyil6h, )

- #;isa N x 1 parameter vector, while « is typically a N x N matrix
- N systematic components are defined as (Example?):

0 = ag1(X, Br)
bhi = 92X, B2)
Ovi = gn(Xni, Bn)

- This model differs from N separate equation-by-equation models if the elements of
Y; are (conditional on X) correlated (i.e., stochastically dependent) or share
parameters (e.g, a constraint such that 3, = ;)
20



Bivariate Normal Distribution, i.e. N =2

Suppose you estimate two normal regressions simultaneously ...

. i i o? P
i= ~ N ;
Yai Hoi p oo

(a) p=0.0 (b) p=0.5 (c) p=0.99

p captures the degree to which both error terms are correlated. The uncertainty of a
model’s prediction (quantity-of-interest) depends also on the other model’s error term
(if p > 0). Separate estimation is inefficient if p > 0. Pl



The Heckman Model




Heckman Model as a particular Multiple Equation Model

- Let Y; vector for observation i (=1,...,n)
= Yi = (Y5, Yy) is bi-variate normal distributed with an
1. Selection equation:
Vi = i + Ui = XqiBr + Ui, U ~ N(0,1)
with an stochastic censoring mechanism (a.k.a sample selection rule)
T yi>0
Vi = yl/
0 y;<0
2. Outcome equation: For all selected observations i, i.e,, if y; > 0 one has
Vi = i + € = Xoi2 + €, € ~ N(0,07)
whereby the error terms of both equations are correlated, i.e. 0 # p = corr(u;, ¢;). (Note
that we get a Tobit as a special case if yj; = y»;)
- Thus, (check the dimensionality!)

v — Vi N () 1 pz
Y Hoi p o .



... and the Likelihood

The likelihood function is a combination of the likelihood for censored and uncensored
observations

- Foryj; < 0 all that is observed is that this event occurred. Thus, the density is the
probability Pr(y;; < 0) that it occurred

- For y;; > 0 we observe y,; with a certain (conditional) probability. It is the probability
of being selected, Pr(y;; > 0), multiplied by the bivariate density f(y,i|y;; > 0).

- The likelihood function of a bivariate sample selection model is as follows:

n
L(B1, B2, p,07) = [T Privs < 0)' - {f(vaily; > 0) - Pr(y;; > 0)}"
i=1
- One can show that the second term simplifies to a univariate normal distribution
that can be easily handled computationally. Details can be found, for instance, in
Amemiya’s Advanced Econometrics (1985: 385-7) textbook.
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Application: A Model to predict success in the Graduate Program

- Suppose we like to test whether GRE-scores predict success in terms of grades in our
PhD-program.

- Obviously, in all the application files we have GRE-scores. Grades, however, are only
available for the ones who join our program.

- Thus, the bottom of the distribution of the unobserved variable (Y;‘,-), Admission
Rating of our PhD-program, is censored. The PhD selection committee only admits
those candidates and monitor their performance who rate high on the latent
Admission Rating variable.

24



Application: A Model to predict success in the Graduate Program

- Suppose we have the following selection and outcome equation:
1. Selection equation:

AdmissionRating = S + fnGRE + B TOEFL 4 uj, u; ~ N(0,1)

with a censoring mechanism (a.k.a sample selection rule)

. 1 AdmissionRating> 0
Admission = o .
0 AdmissionRating< 0

2. Outcome equation: For all enrolled (and former) students i, i.e., if AdmissionRating > 0
one has

Success = B + BnGRE + BuMath + ¢, & ~ N(0,07)

- Admitted graduate students are not representative of applicants generally. Despite
low GRE-scores applicants get admitted if they have high TOEFL-scores or because
they have large error term - i.e,, their applications have qualities that are
uncorrelated with GRE or TOEFL scores (e.g., strong letter, University’s reputation).

25



What if we just run an OLS for all observations we have data for?

- Group of students that were admitted because of high GRE scores are representative
of the group of applicants with high GRE scores.

- However, the group of admitted students with low GRE scores are not representative
of the group of all applicants with this score. Assuming that the selection committee
has done a good job, those admitted low-score students perform better than the
non-admitted ones.

- Thus, running regression on the selected sample might wrongly show that GRE does
not systematically predict success in graduate school.

26



Identification, Interpretation and Estimation

- Selection bias models, as the Timpone-Example shows, are not bounded to have a
normally distributed stochastic component but can be in principle fit to any theory
about the selection and outcome processes.

- Identification of those processes is an issue with selection bias models, though. You
need at least one variable (and the more the better!) that only predicts selection but
not the outcome (otherwise identification hinges solely on non-linearity of the
selection equation, hence on distributional assumptions that cannot be checked
rigorously).

- Interpretation. As usual, calculate expected values, predicted probabilities and
first-differences using statistical simulations.

- You can estimate these models in R for instance using the
library(sampleSelection).

27



Case Selection and Selection Bias




Selection on the Dependent Variable
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Dependent e i
Variabte <« « «D-
(e.g.‘ .é. o e e
Growth) e SEET
Low .o G . s
Low High
Independent Variable
(Factor X)
Fig. 1. Assumed relationship between factor X and the dependent
variable

Taken from: Geddes, Barbara. 1997. “How the Cases You Choose Affect the Answers You Get:
Selection Bias in Comparative Politics” Political Analysis 2(1): 131-50; Figure 1.
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Selection on the Dependent Variable
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Fig. 2. An alternative possibility for the relationship between factor X and
the dependent variable

Taken from: Geddes, Barbara. 1997. “How the Cases You Choose Affect the Answers You Get:
Selection Bias in Comparative Politics” Political Analysis 2(1): 131-50; Figure 2.
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Selection on the DV - Endpoints in a Time Series
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Fig. 11. Inflation in Chile, 1930-72. {Data for 1930-61 from Hirschman

Taken from: Geddes, Barbara. 1997"How the Cases You Choose Affect the Answers You Get:
Selection Bias in Comparative Politics” Political Analysis 2(1): 131-50; Figure 11. 30
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