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Introduction



What should you take home from this class today?

• We will broaden the applicability of the multinominal logit model (MNL) through a
theoretically richer parameterization of the model’s systematic component to arrive
at the so-called conditional logit model (CL)

• We will discuss our simulation strategy to account for estimation and fundamental
uncertainty when calculating quantities of interest.

• Guess what? We will see an example that our discipline can actually do much better
than merely Xβ in terms of theory testing.

• We also discuss the so-called IIA assumption for MNL and CL models.

2



Quiz



Quiz

For a sample of countries using MLE we estimate the expected government effectiveness
score (i.e., a predicted probability) and the respective 95% CIs for governments around the
world. Can we conclude that European governments are on average more effective than
Asian governments in our sample?
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1. Yes, since the point estimate for Europe is greater
than for Asia.

2. Yes, if and only if the confidence intervals do not
overlap, the respective difference is systematic.

3. No, because the difference in means is not
evaluated.

4. No, because the vertical axis has no measurements.
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Conditional Logit Model



Changing the systematic component to derive the Conditional Logit Model

• The systematic component of a decision-maker’s utility function might not only
depend on her characteristics but also on characteristics of the alternatives (i.e., the
different choices).

• Interesting party characteristics of the Absurdistan vote-choice example might be, for
instance, size, governmental experience, campaign expenditure, …

• Such variables vary across alternatives j (not only across all decision-makers i).

• Take the familiar spatial model, where a decision-maker’s utility depends on the
distance in a policy space between her and the (perceived) positions of the parties
in her choice-set. Note, such issue-distance variables vary across alternatives j and
decision-makers i as well.
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The Conditional Logit Model (CL)

• Thus, as before in the MNL case, let Uij be the utility of decision-maker i derived
when choosing alternative j ∈ {1, . . . , J}.

• Given that we cannot observe the decision-maker’s utility, we need to specify the
systematic component such that it relates observable characteristics of the
decision-maker (Xi) as well as characteristics of the alternatives (Zij) to her utility
Uij = Vij + ϵij. Thus,

Vij = Xiβj + Zijγ
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The Conditional Logit Model (CL)

• Thus, the probability that decision-maker i chooses alternative j is:

Pr(yi = j|Xi, Zij) =
exp(Vij)∑J
j=1 exp(Vij)

=
exp(Xiβj + Zijγ)∑J
j=1 exp(Xiβj + Zijγ)

,

with β1 = (β11, β12, . . . , β1(k+1))
′ = 0

• Note that in terms of the systematic component Vij, we can write the probability that
decision-maker i chooses alternative j in exactly the same terms.

• Multinomial and conditional logit models are variants of the same model. They only
have different parameterized systematic components Vij.
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Deriving the Likelihood Function for CL

Given that each decision-maker chooses one and only one alternative we use an
indicator yij to accomplish this. Thus, as with the MNL before, the log-likelihood
contribution Li of decision-maker i is

lnLi = ln(
J∏
j=1

Pr(yi = j)yij)

=
J∑
j=1

yijln(Pr(yi = j))

Then summing-up all N individual contributions assuming independent realizations gives
us the log-likelihood of the conditional logit model.

lnL(β2, . . . , βJ, γ) =
N∑
i=1

J∑
j=1

yijln(Pr(yi = j))

=
N∑
i=1

J∑
j=1

yijln(
exp(Xiβj + Zijγ)∑J

m=1 exp(Xiβm + Zimγ)
) 7



Chooser- and Choice-specific Data

Again, suppose we are interested in explaining vote-choice in Absurdistan with its stable
3-party-system consisting of 1 = the Blues, 2 = the Reds and 3 = the Greens.

• Suppose the systematic component of our model consists of chooser characteristics
Age and Education as well as a choice-characteristic IssueDistance.

• Thus: Vij = Xiβj + Zijγ = βj1 + βj2 · Agei + βj3 · Educationi + γ1 · IssueDistanceij
• Given that the choice-set consists of three parties, the systematic components for
decision-maker i with β1 = (β11, β12, β13)

′ = 0 are:

Vi1 = β11 + β12 · Agei + β13 · Educationi + γ1 · IssueDistancei1
Vi2 = β21 + β22 · Agei + β23 · Educationi + γ1 · IssueDistancei2
Vi3 = β31 + β32 · Agei + β33 · Educationi + γ1 · IssueDistancei3

• As you can see, the effect (β’s) of our chooser-specific variables vary across the
three alternatives while the effect (γ1) of our choice-specific variable does not.
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CL needs data in long-format
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A Table of CL estimation results

! "#!

 
Table 3: Conditional logit model results predicting behavioral personalization  

 Behavioral Personalization 
  
Campaign Intensity -0.03* 
 (0.02) 
  
Campaign Norm -0.11* 
 (0.06) 
  
Campaign Content 0.31 
 (0.20) 
  
Campaign Organization 0.05*** 
 (0.02) 
  
Exposure -0.02 
 (0.27) 
  
Partisanship 0.68*** 
 (0.08) 
  
Cognitive Personalization 1.71*** 
 (0.39) 
  
 SPD Greens FDP Left 
 Reference Party: CDU/CSU 
  
East -1.30 -1.32 -1.17 -1.07 
 (0.89) (0.83) (0.91) (0.95) 
  
Political Knowledge 0.02 0.27 0.11 -0.89* 
 (0.46) (0.47) (0.51) (0.52) 
  
Intercept 0.52 0.55 0.47 1.61 
 (0.73) (0.86) (0.81) (0.99) 
  
Log-Likelihood -114 
No. of voter-candidate dyads 799 
No. of voters 285 

Note: Entries are estimated coefficients with standard errors in parentheses. 
*  p < 0.10; ** p < 0.05; *** p < 0.01. CDU/CSU is reference category. 
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Interpretation of the CL
Estimation Results



Calculate Quantities of Interest

Take a look at the code we used for logit/probit. We just have a different systematic
components (including the normalization). Thus, …

• predicted probabilities.
• first differences.
• …

You can estimate this model in R for instance using the library(mlogit).
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Modifying our R-Code

# ===========================================
# = Step 3: Get theta_c (linear predictor) =
# ===========================================

#INSTEAD OF .... # theta_1 <- S %*% oil
# ev1 <- 1/(1+exp(-theta_1))
# theta_2 <- S %*% nonoil
# ev2 <- 1/(1+exp(-theta_2))

# USE THE FOLLOWING .....
theta_b <- S %*% blue # make sure scenario is well-defined
theta_r <- S %*% red # because some coeficients in S have to be set
theta_g <- S %*% green # to zero! (beta_1k for baseline among others)

ev_blue <- exp(theta_b)/(exp(theta_b) + exp(theta_r) + exp(theta_g))
ev_red <- exp(theta_r)/(exp(theta_b) + exp(theta_r) + exp(theta_g))
ev_green <- exp(theta_g)/(exp(theta_b) + exp(theta_r) + exp(theta_g))

mean(ev_blue); mean(ev_red); mean(ev_green)
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OK, lets do this step-by-step

# Read-in the data and estimate a conditional logit model
data <- read.dta("absurdistan.dta", convert.factors = FALSE)

ABvote <- mlogit.data(data, shape = "long", choice = "choice",
alt.var = "party", id = "respid")

m <- mlogit(choice ~ disLR | educ + age , data = ABvote)
summary(m)

coef(m); vcov(m)
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Estimation Results of a CL Model

> summary(m)

Coefficients :
Estimate Std. Error t-value Pr(>|t|)

alt2 -0.807542 0.287254 -2.8112 0.0049350 **
alt3 -2.864844 0.362069 -7.9124 2.442e-15 ***
disLR -0.729309 0.037649 -19.3710 < 2.2e-16 ***
alt2:educ 0.361627 0.098887 3.6570 0.0002552 ***
alt3:educ 0.831419 0.120160 6.9193 4.540e-12 ***
alt2:age -0.485551 0.210337 -2.3084 0.0209744 *
alt3:age -0.472063 0.249504 -1.8920 0.0584906 .
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Log-Likelihood: -616.98
McFadden R^2: 0.41591
Likelihood ratio test : chisq = 878.64 (p.value=< 2.22e-16) 14



As Before: Simulate Estimation Uncertainty

# ===========================================
# = Step 1: Simulate Estimation Uncertainty =
# ===========================================

# For MVRNormal we need two parameters (mean and variance)
# get gamma and V from mlogit
gamma <- m$coefficients # estimated betas, gammas

V <- solve(-m$hessian) # inverted neg. Hessian

library(MASS) # provides mvrnorm

nsim <- 10000 # N simulations
set.seed(1234) # to replicate draws
S <- mvrnorm(nsim, mu = gamma, Sigma = V) # simulations of gamma
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Define Scenario of Interest in terms of S

# ========================================
# = Step 2: Choose Scenario of Interest =
# ========================================
> head(S)

alt2 alt3 disLR alt2:educ alt3:educ alt2:age alt3:age
[1,] -0.2942 -2.7003 -0.75341 0.331169 0.87911 -1.17044 -0.702439
[2,] -0.6990 -3.0388 -0.72884 0.309437 0.84576 -0.38923 -0.280940

# Given S the corresponding scenario (vector)
# is structured as follows:
# c(alt2, alt3, disLR, alt2:educ, alt3:educ, alt2:age, alt3:age)

red <- c(1, 0, mean(ABvote[ABvote$party==2,"disLR"]),
mean(ABvote[,"educ"]), 0, mean(ABvote[,"age"]), 0)

green <- c(0, 1, mean(ABvote[ABvote$party==3,"disLR"]), 0,
mean(ABvote[,"educ"]), 0, mean(ABvote[,"age"]))

blue <- c(0,0,mean(ABvote[ABvote$party==1,"disLR"]), 0, 0, 0, 0) 16



Back to where we started

# ===========================================
# = Step 3: Get theta_c (linear predictor) =
# ===========================================

theta_b <- S %*% blue # make sure scenario is well-defined
theta_r <- S %*% red # because some coeficients in S have to be set
theta_g <- S %*% green # to zero! (beta_1k for baseline among others)

ev_blue <- exp(theta_b)/(exp(theta_b) + exp(theta_r) + exp(theta_g))
ev_red <- exp(theta_r)/(exp(theta_b) + exp(theta_r) + exp(theta_g))
ev_green <- exp(theta_g)/(exp(theta_b) + exp(theta_r) + exp(theta_g))

mean(ev_blue); mean(ev_red); mean(ev_green)
quantile(ev_blue, c(.025,.975))

When E(Yc) = θc, one can skip step 4 and 5. Once we have πi, we do not need to draw Yc
and than average them (to incorporate fundamental uncertainty) to get E(Yc) = πi. 17



... and we can even plot them
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For more details about the R-Code see class10.R 18



CL - Varying Choice Set

• One can generalize the conditional logit model to allow for varying choice-sets across
decision-makers. Examples:

• Parties might not run in every district (length of ballot varies).
• Which coalition will form (depends on no. of parties)?
• In Judicial Politics, e.g., the probabilities associated with assigning the opinion in case i to
justice j. Choice-set reflects varying majorities across cases.

• Biostatisticians and epidemiologists call this a (k1i : k0i)-matched case–control design,
where Ji = k1i + k0i is the size of the choice set for respondent i (e.g., total no. of
alternatives in group i).

• Economists call this model also a fixed-effects logit model for unbalanced panel data, or
cross-sectional time-series data to model war/peace in each country-year or individual
turnout in a series of elections (more than one ‘1’ per group possible!).

• Then, the LL is calculated relative to the number of observed choices in the choice-set Ji of the
ith decision-maker (i.e., sum over Ji instead of J in the denominator of the LL).

• The model estimates the probability of observing a 1 conditional on the total number of ones
(i.e., #1) and the number of choices Ji for each decision-maker (a conditional likelihood is
computed recursively).
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How we can do better than merely
using Xβ for theory testing



Empirical Implications of Theoretical Models (EITM)

• You can use a conditional logit model (or any other statistical model) to estimate a
utility function of a decision-maker that your theory actually comes up with.

• Advantage: You can parametrize (and finally estimate) the systematic component Vij
of your utility function according to your theory.
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Example: Comprehensive Theory of Party-Choice in Absurdistan

• Example: Suppose you develop a more comprehensive theory of party-choice in
Absurdistan.

• The basic components of your theory are that party-choice depends on policy as
well as non-policy factors. Hence,

Vij = α(Policy) + γ(Non− Policy)

• This is well known from the literature. Your contribution, though, is to test whether
voters are more likely to behave according to the directional or the proximity theory
of how policy factors have an impact on vote-choice. Hence,

Vij = α{(1− β) · (Directional) + β · (Proximity)}+ γ(Non− Policy)

• Let xi be voter i’s position on the LR-dimension and pj the position of party j on the
same dimension measured on a 7-pt scale (conceptually better would be to take a
voter’s perceived position pij of party j). Hence,

Vij = α{(1− β) · [(xi − 4)(pj − 4)] + β · (xi − pj)2}+ γ(Non− Policy)
21



Implementation in R - for details see PartyChoiceAbsurdistan.R
Lik_mixedmodel <- function(theta

,Z # response matrix N*K
# True if voter selects party
# else FALSE

,c # vector party positions
,x # vector voter position
,pid # matrix partyidentification
){

J <- ncol(Z) # Number of parties
N <- nrow(Z) # Number of voters
V <- matrix(NA, ncol=J,nrow=N) # Utilities (systematic component)

for (j in 1:J){ # Different parties
V[,j] <- theta[1]*((1-theta[2])*(x-4)*(c[j]-4)+theta[2]*((x-c[j])^2))+theta[3]*pid[,j]
}

# Note, theta[1] = \alpha, theta[2] = \beta, theta[3] = \gamma

# Create matrix for choice probabilities & vector for linear predictor
P <- matrix(NA, ncol=J, nrow=N)
expsum <- NULL

# Calculate sum for each individual;
for (i in 1:N) expsum[i] <- sum(exp(V[i,]))
for (j in 1:J) P[,j] <- exp(V[,j])/expsum

# Return Log liklihood
return(sum(log(P[Z])))
}
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Limitations of MNL or CL Models



Limitations of MNL or CL Models

• Such logit models can account for systematic taste variation (the value
decision-makers place on each characteristic of the alternatives) but not for random
taste variation due to unobserved factors (i.e., unobserved heterogeneity).

• One can include interaction effects between a choice-specific variable and a
chooser-specific variable to capture the idea that an alternative characteristic is more
important for some than for others.

• Nevertheless, two voters with the same values on all independent variables might make
different choices because of unobserved factors.

• Include a random effect to account for unobserved heterogeneity (random parameter
logit can be estimated in R)

• If unobserved factors are not independent over time in repeated choice situations
such that they introduce correlations over time, use so-called discrete time duration
models.
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A Major Limitation? The IIA Assumption

• The ratio of logit probabilities for any two alternatives j and k is:
Pr(y = j)
Pr(y = k) =

exp(Vij)
exp(Vik)

= eVij−Vik

• The key thing to note is that the above ratio does only depend on alternatives j and k.
• Because the ratio is independent of alternatives other than j and k, those logit
models are said to be independent of irrelevant alternatives (IIA)

• IIA implies that the presence or absence of another alternative (e.g. strategic entry
of candidates or parties) should not alter the relative probabilities of any single
decision-maker (conditional on the model’s systematic component!). If alternatives
are seen as substitutes then adjust the systematic component to account for that.

• Logit models assume IIA and cannot capture more flexible substitution patterns
across alternatives. Use Multinomial Probit or Nested Logit models if needed,
although they also have serious drawbacks (e.g., computationally hard, weakly
identified, defending nesting-structure)
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Testing for IIA Assumption

• There are two formal tests (Hausman-McFadden Test, Small-Hsiao Test). However,
they often yield inconsistent and conflicting results.

• IIA was never a big deal in my applications.
• Especially, if the choice situation is modeled realistically.

• Eyeballing (or a Eyeball Test - if you will).
• One way to think about IIA is that the estimated coefficients should be invariant to which
choices are available.

• Drop one (or more) party at a time and reestimate the model. Check whether the
coefficients change or not. If nothing changes IIA seems to hold.
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Testing for IIA Assumption in R

• We can test IIA using the Hausman-McFadden test. We first run two ML or CL models
and apply mlogit first to all choice outcomes and then (successively) to a subset of
choice outcomes. We then use hmftest to calculate the test statistic.

• It should not matter whether we remove one choice (H0).
• Hausman, J.A. and D. McFadden. 1984. “A Specification Test for the Multinomial Logit
Model”, Econometrica 52: 1219-40.

# for subs party==3 is removed from estimation
full <- mlogit(choice ~ disLR | educ + age , data = ABvote)
subs <- mlogit(choice ~ disLR | educ + age , data = ABvote, alt.subset=c("1", "2"))

hmftest(full, subs)

Hausman-McFadden test

data: ABvote
chisq = 16.9384, df = 4, p-value = 0.001987
alternative hypothesis: IIA is rejected
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