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Leftovers from last week:
Fit Measures for Binary
Dependent Variable Models



How to know which model is better?: Out-Of-Sample Forecasts

• Key requirement: Find the systematic rather than idiosyncratic features of any one
data set (although you only have one draw, i.e., one data set).

• Set aside some (random) parts of the data (aka as test data) and fit your model to
the rest (aka training data)

• Make predictions with training data and compare to the test data.
• Compare average predictions and also full distribution
• Say, for a given scenario you predict Pr(y = 1) = 0.2 using the training data, then 20% of
such observations should actually be observed as y = 1 in the test data.

• Gold standard is test data that is really out-of-sample, i.e. not yet available.
• Of course, you need to assume that test and training data generated from the very
same data-generating process. Thus, if the DGP changes between the time training
and test data are observed... tough. Even a good model will fail.

• Still, out-of-sample forecast is the right test for any model.
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Can We Stop Ourselves? On the Danger of Over-fitting
38 2. Overview of Supervised Learning

High Bias

Low Variance

Low Bias

High Variance

P
re

d
ic

ti
o
n

E
rr

o
r

Model Complexity

Training Sample

Test Sample

Low High

FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(x0). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias–variance tradeoff.

More generally, as the model complexity of our procedure is increased, the
variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 1

N

∑
i(yi − ŷi)

2. Unfortunately
training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In

that case the predictions f̂(x0) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.

Taken from: Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2008. The Elements of Statistical Learning
(2nd edition). Chapter 2: Fig 2.11, p. 38.
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Fit Measures for Binary Variable Predictions

• Classify correctly predicted observations (for chosen cut-point at .5)
• Using β̂ from your model, generate predicted probabilities π̂i.
• Generate variable of predicted values ŷi = 1 if π̂i ≥ 0.5, 0 otherwise.

• Generate 2x2 classification table (aka confusion matrix).

Predicted (ŷi)
Observed (yi) 0 1

0 n00 n01
1 n10 n11

• From this, we can construct Percent Correctly Predicted (PCP):

PCP =
n00 + n11

n00 + n01 + n10 + n11
• If, say, the DV is distributed 70 : 30, then a model (to beat) without independent
variables would predict 70% of the cases correctly.

• Problems: (a) Uncertainty? (b) Precision: π̂i = .51 and π̂j = .99 are counted equally 4



Other Fit Measures for Binary Variable Predictions

• Percent Reduction in Error (PRE)
• Classify correctly predicted observations relative to a baseline
• Baseline is the Percent of observations in the Modal Category (PMC) of the dependent
variable.

PRE =
PCP− PMC
1− PMC

• PRE is just a function of PCP, thus, still the precision problems.

• expected Percent Correctly Predicted (ePCP)
• Expected percentage of correct model predictions (Herron 1999 - PA article)

ePCP =
1
N

∑
yi=1

π̂i +
∑
yi=0

(1− π̂i)


• All such classification-based measures focus on a model’s ability to classify
observations. No specification test, though (see Esarey and Pierce 2012)!

• Thus, a good model fit (e.g., high PCP) does not imply a correct model specification.
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Model Selection using ROC

• Problem: Classifications require a normative decision.
• Let C be the number of times it is more costly classifying a 1 than a 0.
• C must be chosen independently of the data; from review of literature, (survey of) policy
makers

• C = 1 often chosen, but without justification
• Decision Theory: Choose Y = 1 when π̂ > 1/(1+ C) and 0 otherwise.

• If C = 1, predict y = 1 when π̂ > 0.5 (as for PCP, PRE, ePCP)
• If C = 2, predict y = 1 when π̂ > 1/3
• Increasing C reduces chances of type I error (“false alarm”)
• If C→ 0 then π̂ → 1, and if C→ ∞ then π̂ → 0

• Only with chosen C it makes sense to compute (a) % of 1s and 0s correctly predicted,
and (b) error patterns in different subsets of the data (or forecast)

• If you cannot justify a priori a value for C, use all of them! Plot ROC
(receiver-operator characteristics) curves
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ROC Curves
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Taken from the demo(roc) in the library(Zelig) (see
help.zelig(logit))

• Compute % 1s and % 0s correctly
predicted for every possible value of C.

• Plot % 1s by % 0s
• Overlay curve for several model
specifications on the same graph.

• Normative decision about C does not
matter if one curve is above another.
We then say that one model dominates
the other.

• Otherwise, one model (specification) is
better than another in specified ranges
of C.

• In R use e.g, library(Zelig) or
library(epicalc)
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Further Model Fit, Specification and Robustness Checks

• Cross-Validation (for all types of models)
• Randomly divide the data set into K equally sized folds (each fold will contain about N

K
observations)

• Train model K-times on all but the k-th fold (k ∈ {1, . . . , K}), then use k-th fold to
estimate model on unseen data. Average across the K results.

• Useful for smaller data sets where one cannot set aside test data
• What does “average results” imply? Point estimates are the mean of the estimated point
estimates of the subsets.

• Standard errors should account for within as well as across variance (see King et al. 2001.
“Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple
Imputation”. American Political Science Review 95: 49 – 69, equation (3))

• Repeated random sub-sampling validation (unobs. heterogeneity)
• Sample 2/3 of data, run model and collect results. Repeat several (about m = 20) times
for different samples and combine results per King et al 2001 (aka “Rubin Rule”, see
above).

• Confront (all) observable implications with your observations.
8



How to get “average results” across m data sets?

• Average point estimates of your quantity of interest q across m sets of estimates

q̄ =
1
m

m∑
j=1

qj

• Standard errors should account for within as well as across variance

SE(q̄)2 = 1
m

m∑
j=1

SE(qj)2 + S2q(1+
1
m )

with S2q =
∑m

j=1(qj − q̄)2/(m− 1)
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Likelihood-Based Approaches

• Evaluation of model fit through any test statistic that is based on a transformation of
the log-likelihood will be a relative measure of model fit (e.g., LRT)

• Akaike Information Criterion: AIC = −2 · lnL+ 2p
• where p is the number of parameters in the statistical model, and L is maximum of the
likelihood function for given model.

• Pick the model among the possible ones with minimum AIC value. There is no statistical
test of difference in AIC.

• The penalty term (2p) does discourage overfitting while rewarding goodness of fit
(because of LL).

• Bayesian Information Criterion: BIC = −2 · lnL+ p · ln(N)
• where N is the number of observations.
• Larger penalty term (p · ln(N)).

• AIC and BIC work even for non-nested models. Further examples are Vuong test,
Bayes factors,....
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Assessing Model Fit graphically - Separation Plot

Brian Greenhill, Michael D. Ward, Audrey Sacks. 2011. “The Separation Plot: A New Visual
Method for Evaluating the Fit of Binary Models” American Journal of Political Science,
55(4): 991-1002.

Example 1

• Graph fitted values with different colors for each observed outcome.
• Line indicates the predicted probabilities of the observations
• Helpful for identifying clusters of false negatives and false positives (systematic or
coding errors)

• Can be used for models with more than two categorical outcomes!
• In R use e.g, library(separationplot)
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Intro



What should you take home from this class today?

• We will get to learn tools to improve the interpretation of our results
• Simulations will be our friends
• We will repeat how to simulate quantities of interest and apply these tools to a logit
example.

• There are two conceptual approaches for defining interesting scenarios:
Average-Case vs Observed Value
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Improving Interpretation through
Simulating Quantities of Interest



Substantive Interpretation in Non-Linear Models

• Interpreting linear regression coefficients is straightforward because, the effect on Y
of a given change in Xj is the same regardless …

• …of the value of that variable
• …of the level of all other independent variables in the model

• “Holding all other variables constant, …”
• This is not so in non-linear models!

• Neither marginal (or discrete) changes with respect to Xj are constant. They are no longer
simply equal to a parameter (βj).

• The effect on Y of a given change in Xj depends on values of all other variables in the
model.

• Thus, we need another strategy for interpretation and need to invest more time in
presenting and interpreting our results.
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What Grandma doesn’t get - The Ugly Table

Table 1: Logistic Regression Predicting Vote Switching

Vote switching (= 1)
Small Party 0.998

(0.228)

Ideology -7.623
(3.078)

Candidate 0.806
(0.214)

Coalition 2.845
(0.340)

Time -0.395
(0.133)

Constant 3.474
(2.487)

Observations 987
Robust standard errors in parentheses

14



Criteria for Substantive Interpretation

• Convert raw results in quantities of substantive interest
• Convey uncertainty about those quantities
• Avoid statistical jargon
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General Principles

1. Communicate Substance, Not Statistics
2. When Performing Inference, Convey Uncertainty
3. Graph Data and Results

16



Communicate Substance, Not Statistics

• The coefficient for Small Party (.998) is statistically significant
• Other things being equal, for supporters of a small party the likelihood of switching
their vote is about 20 percent. That probability decreases to about only 8 percent for
large party supporters.

17



When Performing Inference, Convey Uncertainty

• The coefficient for variable Small Party (.998 with a standard error of .23) is
statistically significant at the .001 level.

• Other things being equal, for supporters of a small party the likelihood of switching
their vote is about 20 (+/- 6) percent. That probability decreases to about only 8 (+/-
2) percent for large party supporters.
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Graph Data and Results - Example 1
     

We applied the predicted value algorithm to predict
the number of government employees in a state with six
million people and an 80 percent Democratic house.
First, we used the statistical software described in the ap-
pendix to estimate the log-linear model and simulate one
set of values for the effect coefficients   (

˜)β  and the ancil-
lary parameter   (˜)σ . Next, we set the main explanatory
variables at Pc = ln(6000) and Dc = ln(0.8), so we could
construct Xc and compute     

˜ ˜θ βc cX= . We then drew one
value of     Ỹc  from the normal distribution     N c(˜ , )θ σ2 . Fi-
nally, we calculated     exp( ˜ )Yc  to transform our simulated
value into the actual number of government employees,
a quantity that seemed more understandable than its
natural logarithm. By repeating this process M = 1000
times, we generated 1000 predicted values, which we
sorted from lowest to highest. The numbers in the 25th
and the 976th positions represented the upper and lower
bounds of a 95-percent confidence interval. Thus, we
predicted with 95-percent confidence that the state gov-
ernment would employ between 73,000 and 149,000
people. Our best guess was 106,000 full-time employees,
the average of the predicted values.

We also calculated some expected values and first
differences and found that increasing Democratic con-
trol from half to two-thirds of the lower house tended to
raise state government employment by 7,000 people on
average. The 95-percent confidence interval around this
first difference ranged from 3,000 to 12,000 full-time em-
ployees. Our result may be worth following up, since, to
the best of our knowledge, researchers have not ad-
dressed this relationship in the state-politics literature.

Logit Models

The algorithms in the third section can also help re-
searchers interpret the results of a logit model. Our ex-
ample draws on the work of Rosenstone and Hansen
(1993), who sought to explain why some individuals are
more likely than others to vote in U.S. presidential elec-
tions. Following Rosenstone and Hanson, we pooled data
from every National Election Study that was conducted
during a presidential election year. Our dependent vari-
able, Yi , was coded 1 if the respondent reported voting in
the presidential election and 0 otherwise.

For expository purposes we focus on a few demo-
graphic variables that Rosenstone and Hanson empha-
sized: Age (Ai) and Education (Ei) in years, Income (Ii)
in 10,000s of dollars, and Race (coded Ri = 1 for whites
and 0 otherwise). We also include a quadratic term to
test the hypothesis that turnout rises with age until the
respondent nears retirement, when the tendency re-
verses itself. Thus, our set of explanatory variables is Xi

= {1, Ai ,     Ai
2 , Ei , Ii , Ri}, where 1 is a constant and     Ai

2  is
the quadratic term.

In our logit model, the probability of voting in a
presidential election is E(Yi) = πi , an intuitive quantity of
interest. We estimated this probability, and the uncer-
tainty surrounding it, for two different levels of educa-
tion and across the entire range of age, while holding
other variables at their means. In each case, we repeated
the expected value algorithm M = 1000 times to approxi-
mate a 99-percent confidence interval around the prob-
ability of voting. The results appear in Figure 1, which il-
lustrates the conclusions of Rosenstone and Hansen
quite sharply: the probability of voting rises steadily to a
plateau between the ages of 45 and 65, and then tapers
downward through the retirement years. The figure also
reveals that uncertainty associated with the expected
value is greatest at the two extremes of age: the vertical
bars, which represent 99-percent confidence intervals,
are longest when the respondent is very young or old.6

A Time-Series Cross-Sectional Model

We also used our algorithms to interpret the results of a
time-series cross-sectional model. Conventional wisdom
holds that the globalization of markets has compelled
governments to slash public spending, but a new book
by Garrett (1998) offers evidence to the contrary. Where
strong leftist parties and encompassing trade unions
coincide, Garrett argues, globalization leads to greater

6 The confidence intervals are quite narrow, because the large
number of observations (N = 15,837) eliminated most of the esti-
mation uncertainty.

FIGURE 1 Probability of Voting by Age
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Conceptually three Steps

1. Define a Quantity of Interest
• Predicted values Y|X of switching a vote for interesting, “typical” (i.e., mean) or observed
values of X

• Expected values E(Y|X)
• First differences E(Y|Xj1 , X)− E(Y|Xj2 , X), the difference of two expected values (e.g., size of
causal effect)

• Average (causal) effect: compute (causal) effect for every observation and then average
across them

• any other quantity

2. Simulate quantity of interest (QoI) and uncertainty around it
3. Visualize results for interesting scenarios (potentially across all values of a key
independent variable)

20



How to simulate Quantities of
Interest?



Strategy for Substantive Interpretation

1. We get QoI as a function of estimated coefficients
2. Where is the uncertainty in a statistical model?
3. Use simulation to account for estimation and fundamental uncertainty
4. Create plots and tables for communicating your results
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Where is the Uncertainty?

Recall that we can write any statistical model as

Yi ∼ f(yi|θi, α) stochastic

θi = g(Xi, β) systematic

1. Estimation Uncertainty: Uncertainty about what the true parameters β and α of the
model are. Think of it as caused by small samples. Vanishes if N gets larger.

2. Fundamental Uncertainty: Represented by stochastic component of the model.
Exists no matter what (even if model is correct and we would have infinite many
observations) because of inherent randomness of the world.
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Simulating Estimation Uncertainty

We account for estimation uncertainty by taking random draws from the approximated
“sampling distribution” of all parameters

• Step 1: Estimate the model by maximizing the likelihood function (as a canned
procedure or using optim() in R), record the point estimates γ̂ of all parameters
γ = vec(β, α) and the estimated variance matrix V̂(γ̂).

• Step 2: Draw one vector γ̃ = vec(β̃, α̃) from the multivariate normal distribution
(representing estimation uncertainty because of CLT), which approximates the
sampling distribution we do not have

γ ∼ N
(
γ̂, V̂(γ̂)

)
One draw γ̃ is also called simulated value.
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Logit implementation in R as a running Example

ll.logit <- function(theta, y, x) {

# theta consists merely of beta (dim is ncol(X))
beta <- theta[1:ncol(X)]

# linear predictor; make sure that X is stored as.matrix
mu <- X %*% beta

# link function
p <- 1/(1+exp(-mu))

# individual ll contribution
ll <- y*log(p) + (1-y)*log(1-p)

# sum
ll <- sum(ll)
return(ll)

}
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Logit Implementation in R as a running Example

# maximize the likelihood function numerically using optim()
res <- optim(c(1,1), # starting values

fn=ll.logit, # the likelihood function
control=list(fnscale=-1), # maximize instead of minimize fct
y =dat$survived, x = X, # the data
method = "BFGS", # optimization method
hessian=TRUE) # return numerical Hessian

cat("MLE Betas\n", res$par, "\n")
cat("Hessian\n")
print(res$hessian)
cat("\nMLE Standard Errors \n", sqrt(diag(solve(-1 * res$hessian))), "\n\n")

# compare with canned logit in R (using standard GLM function)
summary(glm(dat$survived ~ dat$sex, family="binomial"))

# Or use Zelig (but version 3.5.5 or below, or version 5 and above)
summary(zelig(survived~sex, model="logit", data=titanic3))
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1. Predicted Values

We can simulate the distribution of predicted values in the following way:

• To simulate one predicted value, follow these steps:
• Step 1: Draw one vector γ̃ = vec(β̃, α̃).
• Step 2: Decide which scenario you wish to compute (i.e., simulate) and, thus, choose one
value for each explanatory variable in the model (why?). Denote the vector of such
values that defines your scenario with Xc.

• Step 3: Run those values (from step 1 and 2) through link function g(Xc, β̃) of systematic
component. Denote it by θ̃c.

• Step 4: Finally, to get a predicted value of the chosen scenario Ỹc, take one random draw
from, f(θ̃c, α̃), the stochastic component of the statistical model, to simulate fundamental
uncertainty.

• To simulate say M = 1000 predicted values, repeat algorithm 1000 times. Use these
to plot distribution of simulated predicted values or compute average, standard
deviation, percentile values (or anything you want) to summarize this distribution.
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2. Expected Values

We can simulate the distribution of expected values similarly:

• To simulate one expected value, follow steps 1-4 to generate m predicted values and,
then, “average out” fundamental uncertainty (stochastic component) by taking the
expectation of these.

• Step 1: Draw one vector γ̃ = vec(β̃, α̃) to account for estimation uncertainty.

• Step 2: Decide which scenario you wish to simulate and choose Xc, i.e., fix each
explanatory variable at particular values.

• Step 3: Run those values (from step 1 and 2) through link function g(Xc, β̃) to get θ̃c.

• Step 4: Draw m values Ỹ(k)c (with k = 1, . . . ,m) from the stochastic component f(θ̃c, α̃) to
simulate fundamental uncertainty.

• Step 5: Average over fundamental uncertainty (stochastic component) by calculating the
mean of those m simulations to get one simulated expected value E(Yc) =

∑m
k=1 Ỹ

(k)
c /m.

• To simulate, say, M = 1000 expected values, repeat algorithm 1000 times. Use these
to plot distribution of simulated predicted values or compute an average, std. dev.,
certain percentile values (or anything you want) to summarize this distribution.
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Logit Implementation in R as a running Example

# ===========================================
# = Step 1: Simulate Estimation Uncertainty =
# ===========================================

# get gamma and V from optim()
gamma <- res$par

V <- solve(-res$hessian)

library(MASS) # provides mvrnorm
nsim <- 1000 # N simulations
set.seed(1234) # to replicate draws
S <- mvrnorm(nsim, mu = gamma, Sigma = V) # simulations of gamma

dim(S)
# look at simulated distribution in contrast to
# estimated beta coeff (for men)
hist(S[,2], breaks=20)
abline(v=gamma[2], col="red", lwd=2)
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Histogram of S[, 2]
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Logit Implementation in R as a running Example

# ================================
# = Step 2: Choose Scenario X_c =
# ================================

# set e.g. all covariates to the sample mean
# mean will be applied over columns of X
# Check ?apply for descriptions of all other arguments.
X_c <- apply(X, 2, mean)

# ========================================
# = Step 3: Get lp_c (linear predictor) =
# ========================================

lp_c<- S %*% X_c
# run it through link-function
theta_c <- 1/(1+exp(-lp_c))

# summarize simulation results
mean(theta_c); sd(theta_c)
quantile(theta_c, c(.025, .975)
hist(theta_c, breaks=20) 30



Logit Implementation in R as a running Example

# =============================================
# = Step 4: Simulate Fundamental Uncertainty =
# =============================================

# create empty vector to store random draws
Y_c<-rep(NA,nsim)

set.seed(1212) # to be able to replicate draws
for (i in 1:nsim){
Y_c[i]<-rbinom(n = 1, size = 1, prob = theta_c[i])
}

table(Y_c)

# =================================================
# = Step 5: Average over Fundamental Uncertainty =
# =================================================

mean(Y_c)
31



Difference between Predicted and Expected Values

• Predicted values are draws of Y from the stochastic component that are observed or
could be observed (e.g., Ŷ = 1 or 0)

• Expected values are draws from fixed features of the distribution of Y such as E(Y).
Not necessarily observed (e.g., πi = .6).

• Predicted values include estimation and fundamental uncertainty
• Expected values average over fundamental uncertainty. The variance of the
distribution of expected values (but not of predicted values) go to 0 as N gets large.

• Example use of the distribution of predicted values
• Weather Forecast: Pred. prob. that temperature in Mannheim tomorrow drops below 0oC.
• Predicted temperature uncertain because we estimate it and because of natural
fluctuations.

• Example use of the distribution of expected values
• Pred. prob. that temperature in Mannheim on days like tomorrow drops below 0oC.
• Expected temperature is only uncertain because we have to estimate it.
• We are more certain about expected than actual temperature because we do not care
about natural fluctuations. 32



Further Remarks on Simulating Expected Values

• When m = 1 the algorithm to get expected values reduces to the one for predicted
values.

• The larger m the better does the algorithm purge away of fundamental uncertainty.
• When E(Yc) = θc, one can skip step 4 and 5. For instance, in the logit model
(whenever expected value equals predicted prob. such as for Bernoulli processes),
once we have simulated πi, we do not need to draw Yc and than average them to get
E(Yc) = πi.

# results from step 5 (average over fundamental uncertainty)
mean(Y_c)
[1] 0.3598

# compare results if we had stopped with step 3
mean(theta_c)
[1] 0.3589098
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3. First Differences

We can simulate the distribution of first differences using the same logic as before for
simulating expected (as well as predicted) values:

• To draw one simulated first difference, follow the following steps.
• Step 1: Draw one vector γ̃ = vec(β̃, α̃).

• Step 2: Decide which contrast you wish to simulate and choose Xs and Xc, i.e., fix each
explanatory variable at particular values.

• Step 3: Run those values (from step 1 and 2) through link function g(Xc, β̃) to get θ̃c.
Analogously, run g(Xs, β̃) to get θ̃s.

• Step 4: Apply the expected value algorithm twice, once for Xs and Xc (we can reuse
random draws).

• Step 5: Take the difference between the two expected values.
• To simulate say M = 1000 first differences, repeat algorithm 1000 times. Use these to
plot distribution of simulated first difference values, standard deviation, percentile
values (or anything you want) to summarize this distribution.
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Logit Implementation in R as a running Example

# =========================================
# = first differences male vs female =
# =========================================

# Step 1
# Use simulations of mvrnorm from before

# Step 2
# construct scenario of interest

# set everything to sample mean
X_1 <- X_2 <- apply(X, 2, mean)

# Now define contrast
X_1[2] <- 0 # men=0 for female
X_2[2] <- 1 # men=1 for male
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Logit Implementation in R as a running Example

# Step 3 (combining step 4 and 5)
# Get theat_c - the linear predictor

lp_1 <- S %*% X_1
ev1 <- 1/(1+exp(-lp_1))

lp_2 <- S %*% X_2
ev2 <- 1/(1+exp(-lp_2))

# calculate first-difference
# fd = ev(female) - ev(male)

fd <- ev1 - ev2

mean(fd); sd(fd)
quantile(fd, c(.025, .975))
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Histogram of fd
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Construction of the Scenario of Interest

There are two conceptual approaches: Average-Case vs Observed Value

1. So far we have seen examples of the so-called average-case approach to define
scenario of interest.

• Set key IV to interesting value, and the other to average (typical) values.
• Note that those scenarios are hypothetical — they might not actually exist in your data
(inference is model dependent!)

• Nevertheless helpful for theory tests because we often do not hypothesize about an
“average case” but about specific conditions under which a relationship holds.

2. The so-called observed-value approach is an alternative
• Provides average marginal effect (AME), i.e. average of the individual marginal effects of
the expected change in the probability for a unit change in the key variable of interest

• Used to calculate average treatment effect (ATE), the average of first-difference when unit
gets (hyp.) treatment and when it is not, or more generally the marginal effect of a
randomly picked observation.

• But mean (average) of the marginal effects (AME) ̸= marginal effect at the mean (MEMs).

It’s problematic to calculate counterfactuals that are “far away from the data”. 38



Simulating Parameters - Some Useful Tips

1. Simulate all parameters including ancillary parameters together.
2. Reparameterize to unbounded scale to …

• …make γ̃ converge more quickly in n to a multivariate normal. Thus, more reasonable for
smaller sample size.

• …make maximization algorithm work faster and without explicit constraints.
3. Ideally, all parameters should be unbounded and logically symmetric, e.g.,

• for non-negative parameters: σ2 = eη

• for 0− 1 bounded parameters (e.g., probability): π = 1
1+e−η .

• for −1 ≤ ρ ≤ 1, use ρ = (e2η − 1)/(e2η + 1) (Fisher’s Z transformation)
In all three cases, η is unbounded. Reparameterize back to a scale people care about.
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Simulating Parameters - More Useful Tips

• Always compute simulations of Y (i.e. predicted values) and use that as a basis for
simulating other quantities (of interest).

• If you are interested in simulating functions of Y, say ln(Y) do the following: Simulate
ln(Y) and then apply the inverse function exp(ln(Y)) to get Y. Y is probably on a
meaningful scale we care about.

• Check approximation error of your simulation: Run it twice, check no. of digits of
precision that do not change. If not enough precision for presenting results in a
table, increase M (or m) and try again.

• Analytical calculations (e.g., delta method) and other tricks can speed-up simulation
and increase precision.

• Zelig does support various models (including Bayesian!) in R.
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