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Leftovers from last week:
Implementation in R



Infrastructure of “Advanced Quantitative Methods” Course

Three steps to come up with a suitable ML Estimator for your research question

1. Formulate a suitable probability model of the data-generating process including
assumptions of how Y is distributed (i.e., stochastic component) and a
parametrization of stuff that gets estimated (i.e., systematic component).

2. Write down the (log-)likelihood function based on your parametrization and

assumptions.
3. Maximize the Log-Likelihood, analytically (often hard, even impossible) or

numerically (use functions in R).
There are two more things we need to talk about this semester:

- Interpretation of estimation results through simulating quantities of interest (you
have seen this last semester as well as in the lab)
- How to check whether the assumed model does fit the data? (Coming soon!)

Then, we can apply this infrastructure to any existing model or come-up with our own
model.



Implementation in R

- Let's estimate a linear regression model via maximum likelihood instead of using
ordinary least squares
- Step 1: Assume the following model:
Yi o~ vl o?) stochastic
pi = XB(=Bo+Bix) systematic
- The parameters we are going to estimate using the above parameterization are
0 = (11,0") = (Bo, Br,0?)

- We further assume that y; is iid.



Implementation in R

- Step 2: Using our assumptions about the model and the chosen parameterization of
the systematic component, we can set up the likelihood function as follows:

N
1
L(B,0?ly) = (2ro?)~M/? exp [202 d = - M)Z]
=1

- Then (although this is optional) we can take the log of the likelihood function,
because it simplifies the next step (i.e. maximization):

N
100L(5,0°ly) = —5109(2m0?) — 5 > (s~ o — Hx)
i=1
N
= ——log(Zw)—N log(o %Z—BM
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Implementation in R

- Now, let's write the log-likelihood as a R-function Tm.l1ik:
1m.lik <- function(theta, y, x) {

betad <-
betal <-
gamma <-

theta[1]
theta[2]
theta[3]

# Parametrize sigma2 to be non-negative
sigma2 <- exp(gamma)

# Residual

e <- y - beta® - betalxx

# Log lik
logl <-
# Log lik
logl <-

function for one observation
-1/2+log(sigma2) - 1/2+(e”2/(sigma2))
function is sum over N observations
sum(logl)

return(logl)



Implementation in R

- Here is a slightly more general code of the same likelihood:
1m.likl <-function(theta,y,X){
N<-nrow(X) # number of observations
k<-ncol(X) # number of parameters
# Supstring paramters theta
beta<-thetal[1:k]
gamma<-thetal[k+1]
# Parametrize sigma2 to be non-negative
sigma2 <- exp(gamma)
# Residual
e<- y-(X%*%beta)
# Log lik function fover N observations
logl <- - 1/2*N+log(sigma2)-1/2+((t(e)%*%e)/(sigma2))
return(logl)
}



Implementation in R

- Step 3: Maximize the log-likelihood numerically. Of course, we could do it
analytically (see last week). Now we let the computer do all the work for us.
- R provides a tool named optim( ) which maximizes arbitrary functions numerically
if we specify control=1list(fnscale=-1) (optim() tries to minimize by default).
- To maximize our likelihood function, we need to feed optim( ) with a set of starting
values (the optim(stval, ...)'sfirst guesses for the parameters).
stval <- c(1,1,1)
- Then we simply call optim() to maximize a likelihood function (fn=1m.1ik), with
particular starting values (stval) and data (y=y, x=X)
res <- optim(stval, fn=lm.lik, control=1list(fnscale=-1),
y=y, X=X, hessian=TRUE)
> res$par
[1] 49.708304 1.125821 10.378797
> sqrt(diag(solve(-1 * res$hessian)))
[1] 1.6249732 0.4578586 3.7924240
- Take some data and see how our éy, compares to fs!



Heteroskedastic Regression



Heteroskedastic Regression

- Now, what if we instead relax the homoskedasticity assumption?
- Step 1: Assume the following model:

Yio o~ (il o?) stochastic
i = XB(=Bo+ pix) systematic
o2 = exp(yZ) (= exp(yo +mz)) systematic

- The parameters we are going to estimate using the above parametrization of the
model’s systematic component are 6 = (5o, /1,7, )

- We further assume that the y; are independently distributed.

- Thus, we get the following log-likelihood function:

N
logL(sly) = —>log(2m)— 3" log 52 ~o— pink

;
- 1= (Vi — Bo — Bixi)’
Z 2 Z exp(vo + 71Zzj)

=1 i=1

N

N
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Heteroskedastic Regression - Implementation in R

* Lets write the LL as a R-function hetero.1ik, but this time with four arguments (0, y, x, 2):
hetero.lik <- function(theta, vy, x, z) {
beta® <- thetal1]
betal <- thetal[2]

gamma® <- thetal[3] # This line is new
gammal <- thetals] # This line is new
# Residual

e <- y - beta® - betalxx
# Variance parameterization

sigma2 = exp(gamma® + gammal*z) # This line is new
# Log lik function for one observation

logl <- -1/2xlog(sigma2) - 1/2x(e”2/(sigma2))
# Log lik function is sum over N observations

logl <- sum(logl)

return(logl)

t

- Note, we need to feed optim( ) with four starting values! o



Heteroskedastic Regression - Implementation in R

# start values for maximization algorithm - now we need 4 values
stval <- c(0,0,0,0)

# maximize the likelihood function numerically using optim()

res2 <- optim(stval,
fn=hetero.lik,
control=list(fnscale=-1),
y=y, X=X, z=2,
hessian=TRUE)

starting values

the likelihood function

maximize rather than minimize funct
the data

return numerical Hessian

H OHF H ¥ R

cat("MLE Betas\n", res2$par[1:2], "\n\n")

cat("MLE Gammas\n", (res2$par[3:4]), "\n\n")

cat("Hessian\n")

print(res2$hessian)

cat("\n MLE St. Errors\n", sqrt(diag(solve(-1*res2$hessian))), "\n\n")



Intro



What should you take home from this class today?

- You will see three equivalent justifications for logit and probit models.

- Buckle up! We expand our toolbox. You will learn many more models for binary
dependent variables (through a different link function). Thus, same stochastic but
different systematic component.

- We will learn some general strategies to check whether the assumed model actually
fits the data.

i



Models for Binary Dependent
Variables



Binary Response Models

There are many social outcomes that are binary, e.g.

- Awar is fought or not

- A coalition dissolves or not

- A respondent reports to vote or not

- A MP votes in favor of a proposal or not

What would happen if we run OLS in such a situation (aka linear probability model)?



The Linear Probability Model

Given that Y; is Bernoulli, we get (remember?)

E(Y,):1~Pr(Y,=1)+O-Pr(Y,~:O): PI’(Y,'Z’I)
Thus,

and (remember?)

Var(Y;) = E(Y)(1 = E(V})) = m - (1 —m) = XiB - (1 — XiB)
- This amounts to fitting an OLS regression ...
..with unbiased point estimates /3

- The variance, however, varies systematically with X; (heteroskedasticity).
- Errors can only take two values, 1 — X;8 or —X;3

- Inference from OLS is therefore invalid (non-normal, heteroskedastic errors).



Fitting Binary Data with a Linear Probability Model
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Model also yields out-of-bounds predictions. Thus we need to transform the systematic

component and find a (link) function g(-), such that 0 < g(X;3) < 1.
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Derivation of Logit and Probit Models

There are three different ways to formulate Logit and Probit Models:

1. Pure Probability Approach
2. Latent Variable Approach
3. Random Utility Approach

All three justifications will lead to the same models.



Pure Probability Approach




1. Pure Probability Approach

- Recall that the Bernoulli would be appropriate if every event had the same chance =
chance of occurring.
- Too restrictive for many substantive applications

1. Stochastic Component:

M for yi=1

Yi ~ YBem(yi"/Ti) = 77,'%(1 - 7rl-)1*% = { 71— fOI’ yi=20

2. Systematic Component:
The model would not be identified if every observation has its own ;. Thus, we
reduce the number of parameters and allow for substantive explanatory variables
through the following parameterization, using a function g(+):
E(Y)) = Pr(Y; = 1) = m = g(Xi3)

3. Y;and Y; are independent, conditional on X



Which link function g(-) should we choose?

We have seen last semester that ...

- Using the cumulative standard logistic, we get the Logit Model.
- Using the cumulative standard normal, we get the Probit Model.

- In practice, both model specifications lead to the same results, because the
standard normal and logistic distribution are rather similar ...



Logistic and standard normal distribution

- The logistic distribution has fatter tails (corresponding to a variance of 72/3)
- Logit and probit coefficients differ by a factor of ca. 1.81 (x/+/3). But both models
produce the same quantities of interest.
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- Taking for g(+) the cumulative standard logistic function A(-) yields
ekib 1

Pf(Y,' = 1) =T = /\(X,B) = T X5 = T o—XP

- The log-likelihood contribution L;(|y) of observation i is
InLi(xly) = yi - In(m) + (1= y;) - In(1 — ;)

- Then summing-up all n individual contributions assuming independent realizations
n
InL(mly) = (vi-In(m) + (1= y;) - In(1 = m))
i=1
- Using our parameterization of 7, the corresponding log-likelihood function of the
Logit model becomes

InL(Bly) = Z (vi- lﬂ(ﬁ) + (1 —=y)-In(1

=1

1
“ e
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- Another choice for g(+) is the standard normal distribution
il 1 172
Pr(Yi=1)=m = ——e 2 dZ=d(X[
(n=n=m=[ —= ()
- The above integral does not have a closed form solution and, therefore, gets
evaluated numerically and is typically abbreviated as ®(X;3).
- The log-likelihood contribution L;(7|y) of observation i is still (as before!)
InLi(wly) = yi - In(m;) + (1= yi) - In(1 — m7)

- Summing-up (assuming independent realizations) and using the above
parameterization of 7, we get

L(AlY) = 37 (vi - I(@003) + (1 = ) - In(1 = ©(X,5)))
- With 1— ®(X;8) = ®(—X;5) because of the symmetry, the corresponding
log-likelihood function of the Probit model becomes

(nL(5ly) = (Vi - In(®0G9) + (1= i) - In(S (X)) 20



Latent Variable Approach




2. Latent Variable Approach

- Let Y* be a continuous unobserved variable (e.g., health, propensity to vote, ect. Also
used to formulate item-response models)
- Define a model through its stochastic and systematic component

Yo~ PV )
pioo= Xip

with an observation mechanism:

)Yyt
y,—{ 0 y*<T

Given that Y* is unobserved anyway we set 7 = 0.
- Finally, lets assume independent realizations.

Question: What model do we get if we observe y* and P(-) is normal?

21



What model do we get if P(-) is normal?

Let the following latent regression model be defined as

Vi =XiB+e
where we assume that e has mean 0 and fixed (not estimated!) homoskedastic variance ...

- .72 /3 if we assume a standard logistic distribution
- 1 if we assume a standard normal distribution

22



Brief Aside on Assumptions

1. Fixed variance of e.

- Suppose we assume a different variance. Say the variance of € is scaled by an
unrestricted parameter o. Then, the latent regression model would become

yi = XiB+oe
yil — X,‘é+6
o o

- This is still the same model and the same data (just rescaled, different threshold 7).

2. Fixed threshold 7 = 0.
- What if 7 # 0? Then, letting « be a unknown constant term (and X; is X; without a column
of 1s) we get

Pr(y; > 1) =Pr(a+XB +e>7)=Pr((a—7)+XB +e>0)

Since (o — 7) is unknown, setting arbitrarily 7 = 0 will just affect the size of the constant
term.

23



Derivation using the Latent Variable Approach

- Given the model assumptions, we have
Priyi=1) = Pr(y; >0)
= Pr(Xi8+¢>0)
= Pr(e> —XiB)
= 1—Pr(e < =XB)
= 1=FH=Xp)

where Fis the cumulative distribution of e.
- If Fis symmetric about 0 (as it is with logistic or normal), we get

Priy; =1) =1— F(=X;8) = F(XiB)
- Now, choosing for F(-) a ...

..cumulative standard logistic yields a logit model, Pr(y; = 1) = A(Xi53).
..cumulative standard normal yields a probit model, Pr(y; = 1) = ®(X;3).

24



Random Utility Approach




3. Random Utility Approach

- Let Uj be the utility of individual i derived when choosing alternative j.
- Assume that Uj, and Uj;, are independent and let

Uj ~  P(Ujluy)
- Let Y* = Uj;, — Ujj, be a difference of utilities with an observation mechanism:
e
Y = Jo y*_
hoy=>0

- Note, this is equivalent to what we got with the latent variable approach.
- Thus, if P(+) is assumed to be distributed ...
..extreme value (aka Gumpel), then the difference Y* is standardized logistic and we get a

logit model.
..standardized normal, then the difference Y* is standardized normal as well and we get

a probit model.

25



Other Models for Binary Data



How to generate other Models for Binary Data?

Same Stochastic but different Systematic Component

- An alternative to the logit and probit CDF's consider the complementary log-log
model (cloglog)
Priyi =1) = m =1—exp(—exp(XiB))
or, alternatively:
[n(~In(1 — Pr(y; = 1))) = X;8
- Another alternative is the log-log model (without the “complementary” “—1" part)

Pr(y; = 1) = m = exp(—exp(Xi3))
or,
In(=In(Pr(y; = 1))) = Xi3
- Such models are used to predict duration of events (war, time to respond, ect).
- Key difference: models are not symmetrical (around 0.5).

- But why assuming that observations with a probability of .5 of choosing either of two
alternatives are most sensitive to changes in independent variables? 26



Other Models for Binary Data

D

Pr(Y

Logit (Beta=1) =—— =—— — C(CLog-Log (Beta=1)
== Log-Log (Beta=1) ~  ========~

Log-Log (Beta = -1)
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Scobit Model

- Taking the cumulative standard logistic function to get the logit model

1

Pr(Ys =) = =7
- One could generalize systematic component to get a more flexible functional form

1
(‘] + e*X,ﬁ)u

Scobit stands for “skewed logit” and is invented by a political scientist (Nagler 1994)

PF(Y,' = 1) =

28



Alpha=0.2 === Alpha=0.5 ~——--— Alpha=1 ======-" Alpha=3

29



Wanna have more? How about Neural Network Models?

- Goal: make relationship between 7 and X very flexible (almost “non-parametric”).
- For the logit model we have:

=TT e %P = logit(X;B) = logit(linear(X;))
- The simplest neural network model is a straight generalization of this:
Pr(Y; = 1) = m; = logit(linear(logit(linear(X;))))

- We can calculate Qol from this as we have done all along (same machinery).

- For an application in PoliSci, see Beck, Nathaniel, Gary King, and Langche Zeng. 2000.

“Improving Quantitative Studies of International Conflict: A Conjecture”. American
Political Science Review 94(1): 21-35.

- No one keeps you from using other stochastic components than Bernoulli to model
a different DGP!

30



Model Fit



How to check whether the assumed model does fit the data?

- There are many different tools to check whether the assumed model does fit your
data.

- We may also find that some models do fit better than other models

- Important to evaluate the assumptions we have been making all along in setting-up
a model and deriving a log-likelihood function.

- Bottom line: Do make an effort to check whether the assumed model does fit your
datal!

31



How to know which model is better?: Out-Of-Sample Forecasts

- Key requirement: Find the systematic rather than idiosyncratic features of any one
data set (although you only have one draw, i.e., one data set).

- Set aside some (random) parts of the data (aka as test data) and fit your model to
the rest (aka training data)

- Make predictions with training data and compare to the test data.

- Compare average predictions and also full distribution
- Say, for a given scenario you predict Pr(y = 1) = 0.2 using the training data, then 20% of
such observations should actually be observed as y = 1in the test data.

- Gold standard is test data that is really out-of-sample, i.e. not yet available.

- Of course, you need to assume that test and training data generated from the very
same data-generating process. Thus, if the DGP changes between the time training
and test data are observed... tough. Even a good model will fail.

- Still, out-of-sample forecast is the right test for any model.

32



Can We Stop Ourselves? On the Danger of Over-fitting

High Bias Low Bias

Low Variance High Variance
— ~-------- emeaaaa -
IS}
—
—
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Training Sample
Low High
Model Complexity
Taken from: Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2008. The Elements of Statistical Learning 3

(2" edition). Chapter 2: Fig 211, p. 38.



Fit Measures for Binary Variable Predictions

- Classify correctly predicted observations (for chosen cut-point at .5)
- Using B from your model, generate predicted probabilities #;.
- Generate variable of predicted values y; = 1if #; > 0.5, 0 otherwise.

- Generate 2x2 classification table (aka confusion matrix).

Predicted (:)

Observed (y;)) 0 1
0 Noo No1
1 N1o N1

- From this, we can construct Percent Correctly Predicted (PCP):
Noo + Nn
Noo + No1 =+ N1 + N
- If, say, the DV is distributed 70 : 30, then a model (to beat) without independent
variables would predict 70% of the cases correctly.
- Problems: (a) Uncertainty? (b) Precision: #; = .51 and #; = .99 are counted equally 34

PCP =




Other Fit Measures for Binary Variable Predictions

- Percent Reduction in Error (PRE)
- Classify correctly predicted observations relative to a baseline
- Baseline is the Percent of observations in the Modal Category (PMC) of the dependent

variable.
PCP — PMC

1— PMC
- PRE is just a function of PCP, thus, still the precision problems.

PRE =

- expected Percent Correctly Predicted (ePCP)
- Expected percentage of correct model predictions (Herron 1999 - PA article)

1 . R
ePCP = (; i+ ;Oﬁ - m))

- All such classification-based measures focus on a model’s ability to classify
observations. No specification test, though (see Esarey and Pierce 2012)!
- Thus, a good model fit (e.g,, high PCP) does not imply a correct model specification.
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Model Selection using ROC

- Problem: Classifications require a normative decision.
- Let C be the number of times it is more costly classifying a 1than a 0.
- C must be chosen independently of the data; from review of literature, (survey of) policy
makers
- C =1 often chosen, but without justification
- Decision Theory: Choose Y =1when # > 1/(1+ C) and 0 otherwise.
- If C=1, predicty = 1when & > 0.5 (as for PCP, PRE, ePCP)
- If C=2, predicty =1when # > 1/3
- Increasing C reduces chances of type | error (“false alarm”)
- IfC—0then# =1, and ifC = cothen® — 0
- Only with chosen C it makes sense to compute (a) % of 1s and 0s correctly predicted,
and (b) error patterns in different subsets of the data (or forecast)

- If you cannot justify a priori a value for C, use all of them! Plot ROC
(receiver-operator characteristics) curves
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ROC Curves

- Compute % 1s and % 0s correctly
predicted for every possible value of C.

ROC Curve

2 e - Plot % 1s by % 0s

- Qverlay curve for several model
specifications on the same graph.

orrectly Predicted

21 - Normative decision about C does not
S matter if one curve is above another.

E We then say that one model dominates
S the other.

Proportion of 0's Ci

- Otherwise, one model (specification) is
s ‘ ‘ ‘ ‘ ‘ better than another in specified ranges

0.0 0.2 04 0.6 0.8 1.0

Proportion of 1's Correctly Predicted Of C .

Taken from the demo(roc) in the library(Zelig) (see : ln R use eg' llbrary(zellg) or

help.zelig(logit)) ‘Library(epicalc)
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Further Model Fit, Specification and Robustness Checks

- Cross-Validation (for all types of models)

- Randomly divide the data set into K equally sized folds (each fold will contain about ¥
observations)

- Train model K-times on all but the k-th fold (k € {1,...,K}), then use k-th fold to
estimate model on unseen data. Average across the K results.

- Useful for smaller data sets where one cannot set aside test data

- What does “average results” imply? Point estimates are the mean of the estimated point
estimates of the subsets.

- Standard errors should account for within as well as across variance (see King et al. 2001.
“Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple
Imputation”. American Political Science Review 95: 49 — 69, equation (3))

- Repeated random sub-sampling validation (unobs. heterogeneity)

- Sample 2/3 of data, run model and collect results. Repeat several (about m = 20) times
for different samples and combine results per King et al 2001 (aka “Rubin Rule”, see
above).

- Confront (all) observable implications with your observations.
38



Likelihood-Based Approaches

- Evaluation of model fit through any test statistic that is based on a transformation of
the log-likelihood will be a relative measure of model fit (e.g., LRT)
- Akaike Information Criterion: AIC= —2-InL +2p
- where p is the number of parameters in the statistical model, and L is maximum of the
likelihood function for given model.
- Pick the model among the possible ones with minimum AIC value. There is no statistical
test of difference in AIC.
- The penalty term (2p) does discourage overfitting while rewarding goodness of fit
(because of LL).
- Bayesian Information Criterion: BIC = —2 - [nL + p - [n(N)
- where N is the number of observations.
- Larger penalty term (p - [n(N)).
- AIC and BIC work even for non-nested models. Further examples are Vuong test,
Bayes factors,....
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Assessing Model Fit graphically - Separation Plot

Brian Greenhill, Michael D. Ward, Audrey Sacks. 2011. “The Separation Plot: A New Visual
Method for Evaluating the Fit of Binary Models” American Journal of Political Science,
55(4): 991-1002.

Example 1

SN I R R IRV gy 1

- Graph fitted values with different colors for each observed outcome.
- Line indicates the predicted values of the observations

- Helpful for identifying clusters of false negatives and false positives (systematic or
coding errors)

- Can be used for models with more than two categorical outcomes!
- InRuseeg library(separationplot)
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