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Leftovers from last week:
Implementation in R



Infrastructure of “Advanced Quantitative Methods” Course

Three steps to come up with a suitable ML Estimator for your research question

1. Formulate a suitable probability model of the data-generating process including
assumptions of how Y is distributed (i.e., stochastic component) and a
parametrization of stuff that gets estimated (i.e., systematic component).

2. Write down the (log-)likelihood function based on your parametrization and
assumptions.

3. Maximize the Log-Likelihood, analytically (often hard, even impossible) or
numerically (use functions in R).

There are two more things we need to talk about this semester:

• Interpretation of estimation results through simulating quantities of interest (you
have seen this last semester as well as in the lab)

• How to check whether the assumed model does fit the data? (Coming soon!)

Then, we can apply this infrastructure to any existing model or come-up with our own
model. 2



Implementation in R

• Let’s estimate a linear regression model via maximum likelihood instead of using
ordinary least squares

• Step 1: Assume the following model:
Yi ∼ fN(yi|µi, σ2) stochastic
µi = Xβ (= β0 + β1xi) systematic

• The parameters we are going to estimate using the above parameterization are
θ = (µi, σ

2) = (β0, β1, σ
2)

• We further assume that yi is iid.
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Implementation in R

• Step 2: Using our assumptions about the model and the chosen parameterization of
the systematic component, we can set up the likelihood function as follows:

L(β, σ2|y) = (2πσ2)−N/2 exp
[
− 1
2σ2

N∑
i=1

(yi − β0 − β1xi)2
]

• Then (although this is optional) we can take the log of the likelihood function,
because it simplifies the next step (i.e. maximization):

logL(β, σ2|y) = −N2 log(2πσ
2) − 1

2σ2
N∑
i=1

(yi − β0 − β1xi)2

= −N2 log(2π)−
N
2 log(σ

2) − 1
2

N∑
i=1

(yi − β0 − β1xi)2
σ2

= −N2 log(2π)−
N
2 log(σ

2) − 1
2

N∑
i=1

(yi − β0 − β1xi)2
σ2 4



Implementation in R

• Now, let’s write the log-likelihood as a R-function lm.lik:
lm.lik <- function(theta, y, x) {
beta0 <- theta[1]
beta1 <- theta[2]
gamma <- theta[3]

# Parametrize sigma2 to be non-negative
sigma2 <- exp(gamma)

# Residual
e <- y - beta0 - beta1*x

# Log lik function for one observation
logl <- -1/2*log(sigma2) - 1/2*(e^2/(sigma2))

# Log lik function is sum over N observations
logl <- sum(logl)
return(logl)

}
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Implementation in R

• Here is a slightly more general code of the same likelihood:
lm.lik1 <-function(theta,y,X){

N<-nrow(X) # number of observations
k<-ncol(X) # number of parameters

# Supstring paramters theta
beta<-theta[1:k]
gamma<-theta[k+1]

# Parametrize sigma2 to be non-negative
sigma2 <- exp(gamma)

# Residual
e<- y-(X%*%beta)

# Log lik function fover N observations
logl <- - 1/2*N*log(sigma2)-1/2*((t(e)%*%e)/(sigma2))

return(logl)
}
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Implementation in R

• Step 3: Maximize the log-likelihood numerically. Of course, we could do it
analytically (see last week). Now we let the computer do all the work for us.

• R provides a tool named optim() which maximizes arbitrary functions numerically
if we specify control=list(fnscale=-1) (optim() tries to minimize by default).

• To maximize our likelihood function, we need to feed optim() with a set of starting
values (the optim(stval, ...)’s first guesses for the parameters).

stval <- c(1,1,1)
• Then we simply call optim() to maximize a likelihood function (fn=lm.lik), with
particular starting values (stval) and data (y=y, x=x)
res <- optim(stval, fn=lm.lik, control=list(fnscale=-1),

y=y, x=x, hessian=TRUE)
> res$par
[1] 49.708304 1.125821 10.378797
> sqrt(diag(solve(-1 * res$hessian)))
[1] 1.6249732 0.4578586 3.7924240

• Take some data and see how our θ̂ML compares to θ̂OLS! 7



Heteroskedastic Regression



Heteroskedastic Regression

• Now, what if we instead relax the homoskedasticity assumption?
• Step 1: Assume the following model:

Yi ∼ fN(yi|µi, σ2i ) stochastic
µi = Xβ (= β0 + β1xi) systematic
σ2i = exp(γZ) (= exp(γ0 + γ1zi)) systematic

• The parameters we are going to estimate using the above parametrization of the
model’s systematic component are θ = (β0, β1, γ0, γ1)

• We further assume that the yi are independently distributed.
• Thus, we get the following log-likelihood function:

logL(θ|y) = −N2 log(2π)−
1
2

N∑
i=1

log(σ2i ) − 1
2

N∑
i=1

(yi − β0 − β1xi)2
σ2i

= −N2 log(2π)−
1
2

N∑
i=1

(γ0 + γ1zi) − 1
2

N∑
i=1

(yi − β0 − β1xi)2
exp(γ0 + γ1zi)
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Heteroskedastic Regression - Implementation in R

• Lets write the LL as a R-function hetero.lik, but this time with four arguments (θ, y, x, z):
hetero.lik <- function(theta, y, x, z) {

beta0 <- theta[1]
beta1 <- theta[2]
gamma0 <- theta[3] # This line is new
gamma1 <- theta[4] # This line is new

# Residual
e <- y - beta0 - beta1*x

# Variance parameterization
sigma2 = exp(gamma0 + gamma1*z) # This line is new

# Log lik function for one observation
logl <- -1/2*log(sigma2) - 1/2*(e^2/(sigma2))

# Log lik function is sum over N observations
logl <- sum(logl)
return(logl)

}
• Note, we need to feed optim() with four starting values! 9



Heteroskedastic Regression - Implementation in R

# start values for maximization algorithm - now we need 4 values
stval <- c(0,0,0,0)

# maximize the likelihood function numerically using optim()

res2 <- optim(stval, # starting values
fn=hetero.lik, # the likelihood function
control=list(fnscale=-1), # maximize rather than minimize funct
y=y, x=x, z=z, # the data
hessian=TRUE) # return numerical Hessian

cat("MLE Betas\n", res2$par[1:2], "\n\n")
cat("MLE Gammas\n", (res2$par[3:4]), "\n\n")
cat("Hessian\n")
print(res2$hessian)
cat("\n MLE St. Errors\n", sqrt(diag(solve(-1*res2$hessian))), "\n\n")
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Intro



What should you take home from this class today?

• You will see three equivalent justifications for logit and probit models.
• Buckle up! We expand our toolbox. You will learn many more models for binary
dependent variables (through a different link function). Thus, same stochastic but
different systematic component.

• We will learn some general strategies to check whether the assumed model actually
fits the data.

11



Models for Binary Dependent
Variables



Binary Response Models

There are many social outcomes that are binary, e.g.

• A war is fought or not
• A coalition dissolves or not
• A respondent reports to vote or not
• A MP votes in favor of a proposal or not

What would happen if we run OLS in such a situation (aka linear probability model)?
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The Linear Probability Model

Given that Yi is Bernoulli, we get (remember?)

E(Yi) = 1 · Pr(Yi = 1) + 0 · Pr(Yi = 0) = Pr(Yi = 1)

Thus,
E(Yi) = Pr(Yi = 1) = πi = Xiβ = linear(Xi)

and (remember?)

Var(Yi) = E(Yi)(1− E(Yi)) = πi · (1− πi) = Xiβ · (1− Xiβ)

• This amounts to fitting an OLS regression …
…with unbiased point estimates β̂

• The variance, however, varies systematically with Xi (heteroskedasticity).
• Errors can only take two values, 1− Xiβ or −Xiβ
• Inference from OLS is therefore invalid (non-normal, heteroskedastic errors).

13



Fitting Binary Data with a Linear Probability Model
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Model also yields out-of-bounds predictions. Thus we need to transform the systematic
component and find a (link) function g(·), such that 0 ≤ g(Xiβ) ≤ 1.
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Derivation of Logit and Probit Models

There are three different ways to formulate Logit and Probit Models:

1. Pure Probability Approach
2. Latent Variable Approach
3. Random Utility Approach

All three justifications will lead to the same models.

15



Pure Probability Approach



1. Pure Probability Approach

• Recall that the Bernoulli would be appropriate if every event had the same chance π

chance of occurring.
• Too restrictive for many substantive applications

1. Stochastic Component:

Yi ∼ YBern(yi|πi) = πyii (1− πi)
1−yi =

{
πi for yi = 1
1− πi for yi = 0

2. Systematic Component:
The model would not be identified if every observation has its own πi. Thus, we
reduce the number of parameters and allow for substantive explanatory variables
through the following parameterization, using a function g(·):

E(Yi) = Pr(Yi = 1) = πi = g(Xiβ)

3. Yi and Yj are independent, conditional on X

16



Which link function g(·) should we choose?

We have seen last semester that …

• Using the cumulative standard logistic, we get the Logit Model.
• Using the cumulative standard normal, we get the Probit Model.
• In practice, both model specifications lead to the same results, because the
standard normal and logistic distribution are rather similar …

17



Logistic and standard normal distribution

• The logistic distribution has fatter tails (corresponding to a variance of π2/3)
• Logit and probit coefficients differ by a factor of ca. 1.81 (π/

√
3). But both models

produce the same quantities of interest.
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Logit Model

• Taking for g(·) the cumulative standard logistic function Λ(·) yields

Pr(Yi = 1) = πi = Λ(Xiβ) =
eXiβ

1+ eXiβ =
1

1+ e−Xiβ
• The log-likelihood contribution Li(π|y) of observation i is

lnLi(π|y) = yi · ln(πi) + (1− yi) · ln(1− πi)

• Then summing-up all n individual contributions assuming independent realizations

lnL(π|y) =
n∑
i=1

(
yi · ln(πi) + (1− yi) · ln(1− πi)

)
• Using our parameterization of πi the corresponding log-likelihood function of the
Logit model becomes

lnL(β|y) =
n∑
i=1

(
yi · ln(

1
1+ e−Xiβ ) + (1− yi) · ln(1−

1
1+ e−Xiβ )

)
19



Probit Model

• Another choice for g(·) is the standard normal distribution

Pr(Yi = 1) = πi =

∫ Xiβ

−∞

1√
2π
e− 1

2 Z
2
dZ = Φ(Xiβ)

• The above integral does not have a closed form solution and, therefore, gets
evaluated numerically and is typically abbreviated as Φ(Xiβ).

• The log-likelihood contribution Li(π|y) of observation i is still (as before!)

lnLi(π|y) = yi · ln(πi) + (1− yi) · ln(1− πi)

• Summing-up (assuming independent realizations) and using the above
parameterization of πi, we get

lnL(β|y) =
∑(

yi · ln(Φ(Xiβ)) + (1− yi) · ln(1− Φ(Xiβ))
)

• With 1− Φ(Xiβ) = Φ(−Xiβ) because of the symmetry, the corresponding
log-likelihood function of the Probit model becomes

lnL(β|y) =
∑(

yi · ln(Φ(Xiβ)) + (1− yi) · ln(Φ(−Xiβ))
)

20



Latent Variable Approach



2. Latent Variable Approach

• Let Y∗ be a continuous unobserved variable (e.g., health, propensity to vote, ect. Also
used to formulate item-response models)

• Define a model through its stochastic and systematic component

Y∗i ∼ P(y∗i |µi)
µi = Xiβ

with an observation mechanism:

yi =
{
1 y∗≥ τ

0 y∗<τ

Given that Y∗ is unobserved anyway we set τ = 0.
• Finally, lets assume independent realizations.

Question: What model do we get if we observe y∗i and P(·) is normal?

21



What model do we get if P(·) is normal?

Let the following latent regression model be defined as

y∗i = Xiβ + ϵ

where we assume that ϵ has mean 0 and fixed (not estimated!) homoskedastic variance …

• …π2/3 if we assume a standard logistic distribution
• …1 if we assume a standard normal distribution

22



Brief Aside on Assumptions

1. Fixed variance of ϵ.
• Suppose we assume a different variance. Say the variance of ϵ is scaled by an
unrestricted parameter σ. Then, the latent regression model would become

y∗i = Xiβ + σϵ

y∗i
σ

= Xi
β

σ
+ ϵ

• This is still the same model and the same data (just rescaled, different threshold τ ).
2. Fixed threshold τ = 0.

• What if τ ̸= 0? Then, letting α be a unknown constant term (and X̃i is Xi without a column
of 1s) we get

Pr(y∗i > τ) = Pr(α+ X̃iβ + ϵ > τ) = Pr((α− τ) + X̃iβ + ϵ > 0)

Since (α− τ) is unknown, setting arbitrarily τ = 0 will just affect the size of the constant
term.

23



Derivation using the Latent Variable Approach

• Given the model assumptions, we have

Pr(yi = 1) = Pr(y∗i > 0)
= Pr(Xiβ + ϵ > 0)
= Pr(ϵ > −Xiβ)
= 1− Pr(ϵ < −Xiβ)
= 1− F(−Xiβ)

where F is the cumulative distribution of ϵ.
• If F is symmetric about 0 (as it is with logistic or normal), we get

Pr(yi = 1) = 1− F(−Xiβ) = F(Xiβ)

• Now, choosing for F(·) a …
…cumulative standard logistic yields a logit model, Pr(yi = 1) = Λ(Xiβ).
…cumulative standard normal yields a probit model, Pr(yi = 1) = Φ(Xiβ).
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Random Utility Approach



3. Random Utility Approach

• Let Uij be the utility of individual i derived when choosing alternative j.
• Assume that Uij0 and Uij1 are independent and let

Uij ∼ P(Uij|µij)

• Let Y∗ = Uij1 − Uij0 be a difference of utilities with an observation mechanism:

yi =
{
j0 y∗≤ 0
j1 y∗> 0

• Note, this is equivalent to what we got with the latent variable approach.
• Thus, if P(·) is assumed to be distributed …

…extreme value (aka Gumpel), then the difference Y∗ is standardized logistic and we get a
logit model.
…standardized normal, then the difference Y∗ is standardized normal as well and we get
a probit model.

25



Other Models for Binary Data



How to generate other Models for Binary Data?
Same Stochastic but different Systematic Component

• An alternative to the logit and probit CDF’s consider the complementary log-log
model (cloglog)

Pr(yi = 1) = πi = 1− exp(−exp(Xiβ))
or, alternatively:

ln(−ln(1− Pr(yi = 1))) = Xiβ
• Another alternative is the log-log model (without the “complementary” “−1” part)

Pr(yi = 1) = πi = exp(−exp(Xiβ))

or,
ln(−ln(Pr(yi = 1))) = Xiβ

• Such models are used to predict duration of events (war, time to respond, ect).
• Key difference: models are not symmetrical (around 0.5).
• But why assuming that observations with a probability of .5 of choosing either of two
alternatives are most sensitive to changes in independent variables? 26



Other Models for Binary Data
Figure 7: Logit, Log-Log, and Complementary Log-Log CDFs

Nagler’s idea, then, is to generalize logit to allow for an asymmetrical CDF, but to do so in
a general way. The solution was to use a little-known distribution known as the Burr-10;
the associated CDF for that distribution is:

Pr(Yi = 1) =
1

[1 + exp(−Xiβ)]α
(26)

where α > 0. This latter “shape” parameter is then flexibly estimated along with the other
parameters of the model (i.e., the βs).

Note that the scobit model “nests” the logit model as a special case when α = 1:

1

[1 + exp(−Xiβ)]1
=

1

1 + exp(−Xiβ)

=
exp(Xiβ)

1 + exp(Xiβ)

14

Taken from MLE handout of ??????? 27



Scobit Model

• Taking the cumulative standard logistic function to get the logit model

Pr(Yi = 1) = 1
1+ e−Xiβ

• One could generalize systematic component to get a more flexible functional form

Pr(Yi = 1) = 1
(1+ e−Xiβ)α

Scobit stands for “skewed logit” and is invented by a political scientist (Nagler 1994)

28



Scobit CDFs with β = 1 and Varying α
Figure 8: Scobit CDFs, with β = 1 and Varying αs

As illustrated in Figure 8, the effect of changing α is to change the “shape” of the CDF

curve. More specifically, different values of α yield CDFs for which max

�
∂Pr(Y =1)

∂X

�
occurs

at different values of Pr(Y = 1).

The scobit models have seen limited use in political science (and some other social sciences).

It is, in principle, a more flexible model than plain-vanilla logit, and there is a Stata package

(creatively titled scobit) that will estimate the model. However, people have also reported

some computational difficulties with the model, since it can sometimes be the case that

changes in the overall likelihood can be equally caused by changes in α or by changing one

or more of the βs.

15

Taken from MLE handout of ???????
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Wanna have more? How about Neural Network Models?

• Goal: make relationship between π and X very flexible (almost “non-parametric”).
• For the logit model we have:

Pr(Yi = 1) = πi =
1

1+ e−Xiβ = logit(Xiβ) = logit(linear(Xi))

• The simplest neural network model is a straight generalization of this:

Pr(Yi = 1) = πi = logit(linear(logit(linear(Xi))))

• We can calculate QoI from this as we have done all along (same machinery).
• For an application in PoliSci, see Beck, Nathaniel, Gary King, and Langche Zeng. 2000.
“Improving Quantitative Studies of International Conflict: A Conjecture”. American
Political Science Review 94(1): 21–35.

• No one keeps you from using other stochastic components than Bernoulli to model
a different DGP!

30



Model Fit



How to check whether the assumed model does fit the data?

• There are many different tools to check whether the assumed model does fit your
data.

• We may also find that some models do fit better than other models
• Important to evaluate the assumptions we have been making all along in setting-up
a model and deriving a log-likelihood function.

• Bottom line: Do make an effort to check whether the assumed model does fit your
data!

31



How to know which model is better?: Out-Of-Sample Forecasts

• Key requirement: Find the systematic rather than idiosyncratic features of any one
data set (although you only have one draw, i.e., one data set).

• Set aside some (random) parts of the data (aka as test data) and fit your model to
the rest (aka training data)

• Make predictions with training data and compare to the test data.
• Compare average predictions and also full distribution
• Say, for a given scenario you predict Pr(y = 1) = 0.2 using the training data, then 20% of
such observations should actually be observed as y = 1 in the test data.

• Gold standard is test data that is really out-of-sample, i.e. not yet available.
• Of course, you need to assume that test and training data generated from the very
same data-generating process. Thus, if the DGP changes between the time training
and test data are observed... tough. Even a good model will fail.

• Still, out-of-sample forecast is the right test for any model.
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Can We Stop Ourselves? On the Danger of Over-fitting
38 2. Overview of Supervised Learning
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FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(x0). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias–variance tradeoff.

More generally, as the model complexity of our procedure is increased, the
variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 1

N

∑
i(yi − ŷi)

2. Unfortunately
training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In

that case the predictions f̂(x0) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.

Taken from: Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2008. The Elements of Statistical Learning
(2nd edition). Chapter 2: Fig 2.11, p. 38.
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Fit Measures for Binary Variable Predictions

• Classify correctly predicted observations (for chosen cut-point at .5)
• Using β̂ from your model, generate predicted probabilities π̂i.
• Generate variable of predicted values ŷi = 1 if π̂i ≥ 0.5, 0 otherwise.

• Generate 2x2 classification table (aka confusion matrix).

Predicted (ŷi)
Observed (yi) 0 1

0 n00 n01
1 n10 n11

• From this, we can construct Percent Correctly Predicted (PCP):

PCP =
n00 + n11

n00 + n01 + n10 + n11
• If, say, the DV is distributed 70 : 30, then a model (to beat) without independent
variables would predict 70% of the cases correctly.

• Problems: (a) Uncertainty? (b) Precision: π̂i = .51 and π̂j = .99 are counted equally 34



Other Fit Measures for Binary Variable Predictions

• Percent Reduction in Error (PRE)
• Classify correctly predicted observations relative to a baseline
• Baseline is the Percent of observations in the Modal Category (PMC) of the dependent
variable.

PRE =
PCP− PMC
1− PMC

• PRE is just a function of PCP, thus, still the precision problems.

• expected Percent Correctly Predicted (ePCP)
• Expected percentage of correct model predictions (Herron 1999 - PA article)

ePCP =
1
N

∑
yi=1

π̂i +
∑
yi=0

(1− π̂i)


• All such classification-based measures focus on a model’s ability to classify
observations. No specification test, though (see Esarey and Pierce 2012)!

• Thus, a good model fit (e.g., high PCP) does not imply a correct model specification.
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Model Selection using ROC

• Problem: Classifications require a normative decision.
• Let C be the number of times it is more costly classifying a 1 than a 0.
• C must be chosen independently of the data; from review of literature, (survey of) policy
makers

• C = 1 often chosen, but without justification
• Decision Theory: Choose Y = 1 when π̂ > 1/(1+ C) and 0 otherwise.

• If C = 1, predict y = 1 when π̂ > 0.5 (as for PCP, PRE, ePCP)
• If C = 2, predict y = 1 when π̂ > 1/3
• Increasing C reduces chances of type I error (“false alarm”)
• If C→ 0 then π̂ → 1, and if C→ ∞ then π̂ → 0

• Only with chosen C it makes sense to compute (a) % of 1s and 0s correctly predicted,
and (b) error patterns in different subsets of the data (or forecast)

• If you cannot justify a priori a value for C, use all of them! Plot ROC
(receiver-operator characteristics) curves
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ROC Curves
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Taken from the demo(roc) in the library(Zelig) (see
help.zelig(logit))

• Compute % 1s and % 0s correctly
predicted for every possible value of C.

• Plot % 1s by % 0s
• Overlay curve for several model
specifications on the same graph.

• Normative decision about C does not
matter if one curve is above another.
We then say that one model dominates
the other.

• Otherwise, one model (specification) is
better than another in specified ranges
of C.

• In R use e.g, library(Zelig) or
library(epicalc)
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Further Model Fit, Specification and Robustness Checks

• Cross-Validation (for all types of models)
• Randomly divide the data set into K equally sized folds (each fold will contain about N

K
observations)

• Train model K-times on all but the k-th fold (k ∈ {1, . . . , K}), then use k-th fold to
estimate model on unseen data. Average across the K results.

• Useful for smaller data sets where one cannot set aside test data
• What does “average results” imply? Point estimates are the mean of the estimated point
estimates of the subsets.

• Standard errors should account for within as well as across variance (see King et al. 2001.
“Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple
Imputation”. American Political Science Review 95: 49 – 69, equation (3))

• Repeated random sub-sampling validation (unobs. heterogeneity)
• Sample 2/3 of data, run model and collect results. Repeat several (about m = 20) times
for different samples and combine results per King et al 2001 (aka “Rubin Rule”, see
above).

• Confront (all) observable implications with your observations.
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Likelihood-Based Approaches

• Evaluation of model fit through any test statistic that is based on a transformation of
the log-likelihood will be a relative measure of model fit (e.g., LRT)

• Akaike Information Criterion: AIC = −2 · lnL+ 2p
• where p is the number of parameters in the statistical model, and L is maximum of the
likelihood function for given model.

• Pick the model among the possible ones with minimum AIC value. There is no statistical
test of difference in AIC.

• The penalty term (2p) does discourage overfitting while rewarding goodness of fit
(because of LL).

• Bayesian Information Criterion: BIC = −2 · lnL+ p · ln(N)
• where N is the number of observations.
• Larger penalty term (p · ln(N)).

• AIC and BIC work even for non-nested models. Further examples are Vuong test,
Bayes factors,....
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Assessing Model Fit graphically - Separation Plot

Brian Greenhill, Michael D. Ward, Audrey Sacks. 2011. “The Separation Plot: A New Visual
Method for Evaluating the Fit of Binary Models” American Journal of Political Science,
55(4): 991-1002.

Example 1

• Graph fitted values with different colors for each observed outcome.
• Line indicates the predicted values of the observations
• Helpful for identifying clusters of false negatives and false positives (systematic or
coding errors)

• Can be used for models with more than two categorical outcomes!
• In R use e.g, library(separationplot)
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