Advanced Quantitative Methods in Political Science: Maximum Likelihood Estimation and Heteroskedastic Regression

Thomas Gschwend | Oliver Rittmann | Viktoriia Semenova
Week 5-16 March 2022

Leftovers from last week:

MLE and Statistical Inference

Properties of the Maximum (i.e. of $\hat{\theta}_{M L}$)

Small Sample Properties

- Invariance to reparameterization
- Rather than estimating a parameter $\hat{\theta}_{M L}$, one can first estimate a function $g\left(\hat{\theta}_{M L}\right)$, which is also a ML estimator.
- In a second step, recover $\hat{\theta}_{M L}$ from $g\left(\hat{\theta}_{M L}\right)$.
- Very useful because $g\left(\hat{\theta}_{M L}\right)$ might be easier derived, or has an more intuitive interpretation (see e.g., King \& Browning's 1987 APSR)
- Allows for transformation of parameters (logit transformation of probabilities; logarithmic transformation of variances; Fisher z-transformation of correlations)
- Invariance to sampling plans
- Information about how data is collected (e.g., sample size) that does not affect the likelihood is irrelevant.
- OK to look at results while deciding how much (further) data to collect.
- Allowed to pool data (if independent, just add LL to the existing one!) to get more precise estimates
- Minimum Variance Unbiased Estimator (MVUE)
- A single unbiased estimator with smallest variance (not necessarily linear!).

Properties of the Maximum (i.e. of $\hat{\theta}_{M L}$)

Asymptotic Properties (think of repeated sampling, i.e., let $\left\{\hat{\theta}_{N}\right\}$ be a sequence of estimators calculated in the same way from larger and larger samples of size N. For each sample size, $\hat{\theta}_{N}$ has a sampling distribution)

- Consistency
- From the Law of Large Numbers, as $N \rightarrow \infty$, the sampling distribution of $\hat{\theta}_{M L}$ collapses to a spike over the (true) parameter value θ.
- Asymptotic normality
- From the Central Limit Theorem, as $N \rightarrow \infty$, the sampling distribution of $\hat{\theta}_{M L} / \operatorname{se}\left(\hat{\theta}_{M L}\right)$ converges to the normal distribution (Mean?, Variance?).
- No matter what distribution we assumed in the model for θ itself!
- Allows us to do hypothesis testing and to construct confidence intervals.
- Asymptotic efficiency
- Among all consistent, asymptotically normal distributed estimators, $\hat{\theta}_{\text {ML }}$ has the smallest variance.
- $\hat{\theta}_{\text {ML }}$ contains as much information as can be packed into a point estimator.

Intro

What should you take home from this class today?

- Log-likelihoods can be approximated around the maximum by a matrix of second derivatives (aka the Hessian) that measures the curvature in the neighborhood of the MLE.
- We get standard errors as square roots of diagonal terms of the VarCov matrix.
- We will implement our first MLE estimator in R and also estimate a (heteroskedastic) regression model.

Three Steps to come up with a suitable ML Estimator for your Research Question

1. Formulate a suitable probability model of the data-generating process including assumptions of how Y is distributed (i.e., stochastic component) and a parametrization of stuff that gets estimated (i.e., systematic component).
2. Write down the (log-)likelihood function based on your parametrization and assumptions.
3. Maximize the log-likelihood, analytically (often hard, even impossible) or numerically (use functions in R).

MLE and Standard Errors

Justifying Standard Errors

- The degree of curvature of the LL of the normal depends on the second derivative, because (remember from last week?) the LL of the normal is quadratic polynomial around the MLE.
- This is generally not the case, but every (i.e. non-normal) LL can be approximated by a quadratic polynomial around the maximum.
- We take the second order Taylor series expansion of the log-likelihood with respect to θ around the maximum $\hat{\theta}$:

$$
f(\theta)=\ln L(\theta \mid y) \approx \ln L \hat{\theta} \mid y)+\left(\frac{\partial \ln L(\hat{\theta} \mid y)}{\partial \theta}\right)^{\prime}(\theta-\hat{\theta})+\frac{1}{2}(\theta-\hat{\theta})^{\prime} \frac{\partial^{2} \ln L(\hat{\theta} \mid y)}{\partial \theta \partial \theta^{\prime}}(\theta-\hat{\theta})
$$

- This is fairly general. In fact, any function can be approximated by a quadratic function (see Taylor series demonstration!)

Taylor Expansion

Figure 1: The exponential function, $f(x)=e^{x}$, and the Taylor series approximation: $x_{0}=0, f_{0}\left(x_{1}\right)=1$ (from Wikipedia)

Taylor Expansion

Figure 2: The exponential function, $f(x)=e^{x}$, and the Taylor series approximation: $x_{0}=0$, $f_{1}\left(x_{1}\right)=1+x_{1}$ (from Wikipedia)

Taylor Expansion

Figure 3: The exponential function, $f(x)=e^{x}$, and the Taylor series approximation: $x_{0}=0$, $f_{2}\left(x_{1}\right)=1+x_{1}+\frac{x_{1}^{2}}{2}$ (from Wikipedia)

Taylor Expansion

Figure 4: The exponential function, $f(x)=e^{x}$, and the Taylor series approximation: $x_{0}=0$, $f_{3}\left(x_{1}\right)=1+x_{1}+\frac{x_{1}^{2}}{2}+\frac{x_{1}^{3}}{6}$ (from Wikipedia)

Taylor Expansion

Figure 5: The exponential function, $f(x)=e^{x}$, and the Taylor series approximation: $x_{0}=0$, $f_{4}\left(x_{1}\right)=1+x_{1}+\frac{x_{1}^{2}}{2}+\frac{x_{1}^{3}}{6}+\frac{x_{1}^{4}}{24}$ (from Wikipedia)

Standard Errors

- Instead of plotting the entire likelihood function, we can summarize the curvature in the neighborhood of the maximum with the Fisher Information Matrix denoted by $\mathcal{I}(\hat{\theta} \mid y)$.
- The information in the data (i.e., degree of curvature) can be estimated as negative expectation in terms of the second derivative (the so-called Hessian Matrix) of the log-likelihood with respect to θ evaluated at $\hat{\theta}$

$$
\mathcal{I}(\hat{\theta} \mid y)=-E\left(\frac{\partial^{2} \ln L(\theta \mid y)}{\partial \theta \partial \theta^{\prime}}\right)=-H(\hat{\theta})
$$

- If θ is a single parameter than the larger $\mathcal{I}(\hat{\theta} \mid y)$, the more curved the log-likelihood and, thus, the more information in the data to estimate $\hat{\theta}$. Hence, we expect to get more precise estimates (i.e., smaller standard errors).

Standard Errors

The Hessian Matrix $H(\theta)$ reflects the degree of curvature of the second-order approximation of the log-likelihood, i.e.,

$$
H(\theta)=\left(\frac{\partial^{2} \ln L(\theta \mid y)}{\partial \theta \partial \theta^{\prime}}\right)=\left(\begin{array}{ccc}
\frac{\partial^{2} \ln L(\theta)}{\partial \theta_{0} \partial \theta^{\prime}} & \frac{\partial^{2} \ln L(\theta)}{\partial \theta^{\prime} \partial \theta^{\prime}} & \cdots \\
\frac{\partial^{2} \ln L(\theta)}{\partial \theta_{1} \partial \theta_{0}^{\prime}} & \frac{\partial^{2} \ln L(\theta)}{\partial \theta_{1} \partial \theta_{1}^{\prime}} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

This is a square, symmetric matrix.
Given that we think about having more precision when having more information (about the curvature around the maximum), the variance-covariance matrix $\operatorname{Var}(\hat{\theta})$ is inversely related to the Information Matrix $\mathcal{I}(\theta \mid y)$, which is the negative of the expected value of the Hessian.

Standard Errors

Thus,

$$
\operatorname{Var}(\hat{\theta})=[\mathcal{I}(\theta \mid y)]^{-1}=[-E(H(\theta))]^{-1}=\left[-E\left(\frac{\partial^{2} \ln L(\theta \mid y)}{\partial \theta \partial \theta^{\prime}}\right)\right]^{-1}
$$

Because of the expected value operator we have to estimate this matrix. This can be done, for instance, through

$$
\widehat{\operatorname{Var}}(\hat{\theta})=\left(\begin{array}{ccc}
-\frac{\partial^{2} \ln L(\hat{\theta})}{\partial \theta_{0} \partial \theta^{\prime}} & -\frac{\partial^{2} \ln L(\hat{\theta})}{\partial \theta_{0} \partial \theta^{\prime}} & \cdots \\
-\frac{\partial^{2} \ln L(\hat{\theta})}{\partial \theta_{1} \partial \theta_{0}^{\prime}} & -\frac{\partial^{2} \ln L(\hat{\theta})}{\partial \theta_{1} \partial \theta_{1}^{\prime}} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)^{-1}=(-H(\hat{\theta}))^{-1}
$$

As you can see, we can read off the standard errors of $\hat{\theta}_{M L}$ from the square roots of the diagonal elements of this matrix. Thus, $\widehat{\operatorname{Var}}(\hat{\theta})$ can be estimated as a function of the matrix of second derivatives. Remember (last week), these are only correct asymptotically!

Variance-Covariance Matrix of a Linear Regression Model

We start with the normal equations and look at the a gradient vector

$$
\frac{\partial \ln L}{\partial \theta}=\binom{\frac{\partial \ln L}{\partial \beta}}{\frac{\partial \ln L}{\partial \sigma^{2}}}=\binom{\frac{x^{\prime}(y-x \beta)}{\sigma^{2}}}{-\frac{N}{2 \sigma^{2}}+\frac{(y-x \beta)^{\prime}(y-x \beta)}{2 \sigma^{4}}}
$$

Next we take the derivative of each element of the gradient vector wrt β and σ^{2}.

$$
\begin{gathered}
\frac{\partial^{2} \ln L}{\partial \beta \partial \beta^{\prime}}=\frac{\partial\left(\frac{x^{\prime}(y-x \beta)}{\sigma^{2}}\right)}{\partial \beta}=-\frac{x^{\prime} X}{\sigma^{2}} \\
\frac{\partial^{2} \ln L}{\partial \beta \partial \sigma^{2}}=\frac{\partial\left(\frac{x^{\prime}(y-x \beta)}{\sigma^{2}}\right)}{\partial \sigma^{2}}=-\frac{x^{\prime} \epsilon}{\sigma^{4}} \\
\frac{\partial^{2} \ln L}{\partial \sigma^{2} \partial \sigma^{2}}=\frac{\partial\left(-\frac{N}{2 \sigma^{2}}+\frac{(y-x \beta)^{\prime}(y-x \beta)}{2 \sigma^{4}}\right)}{\partial \sigma^{2}}=\frac{N}{2 \sigma^{4}}-\frac{\epsilon^{\prime} \epsilon}{\sigma^{6}}
\end{gathered}
$$

Variance-Covariance Matrix of a Linear Regression Model

Subsequently, we can calculate the remaining entries of the Hessian Matrix as

$$
H(\theta)=\left(\frac{\partial^{2} \ln L}{\partial \theta \partial \theta^{\prime}}\right)=\left(\begin{array}{cc}
-\frac{x^{\prime} X}{\sigma^{2}} & -\frac{x^{\prime} \epsilon}{\sigma^{4}} \\
-\frac{X^{\prime} \epsilon}{\sigma^{4}} & \frac{N}{2 \sigma^{4}}-\frac{\epsilon^{\prime} \epsilon}{\sigma^{\top}}
\end{array}\right)
$$

Taking the expectation yields ...

$$
E(H(\theta))=E\left(\left(\frac{\partial^{2} \ln L}{\partial \theta \partial \theta^{\prime}}\right)\right)=\left(\begin{array}{cc}
-E\left(\frac{x^{\prime} x}{\sigma^{2}}\right) & -E\left(\frac{x^{\prime} \epsilon}{\sigma^{4}}\right) \\
-E\left(\frac{X^{\prime} \epsilon}{\sigma^{4}}\right) & E\left(\frac{N}{2 \sigma^{4}}-\frac{e^{\prime} \epsilon}{\sigma^{6}}\right)
\end{array}\right)=\left(\begin{array}{cc}
-\frac{x^{\prime} x}{\sigma^{2}} & 0 \\
0 & -\frac{N}{2 \sigma^{4}}
\end{array}\right)
$$

Thus, the variance-covariance matrix is

$$
\operatorname{Var}(\hat{\theta})=[-E(H(\theta))]^{-1}=\left(\begin{array}{cc}
\sigma^{2}\left(X^{\prime} X\right)^{-1} & 0 \\
0 & \frac{2 \sigma^{4}}{N}
\end{array}\right)
$$

and can be estimated through ...

$$
\widehat{\operatorname{Var}}(\hat{\theta})=[-E(H(\hat{\theta}))]^{-1}=\left(\begin{array}{cc}
\hat{\sigma}^{2}\left(X^{\prime} X\right)^{-1} & 0 \\
0 & \frac{2 \hat{\sigma}^{4}}{N}
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{Var}\left(\hat{\beta}_{\text {OLS }}\right) & 0 \\
0 & \operatorname{Var}\left(\hat{\sigma}_{\text {MLE }}^{2}\right)
\end{array}\right)
$$

Bootstrapping

- OK, I understand that we can use the LL to get standard errors.
- But what should I do in small samples, all standard errors in MLE are only correct asymptotically?
- Use bootstrapping!
- A bootstrap provides a way to perform a statistical inference by re-sampling (i.e. drawing potentially infinite - or at least a really large number of samples) from the data you have.
- Thus, assuming the data you have is equivalent to the population you wanna draw inferences to, bootstrap produces multiple samples (obviously by replacement) from the current population.
- Based on every drawn sample calculate an estimate. Thus, you get a bootstrap sampling distribution of θ.
- The se($\hat{\theta}_{M L}$) would be the standard deviation of this distribution.
- Use the relevant percentiles to construct confidence intervals.

Likelihood ratio for nested models

- L* is the likelihood value of the unrestricted model.
- L_{R}^{*} is the likelihood value of the (nested) restricted model.
- Thus, $L^{*} \geq L_{R}^{*}$, i.e. $\frac{L_{R}^{*}}{L^{*}} \leq 1$.
- Substantively, the likelihood ratio is a ratio of two probabilities (aka risk ratio):

$$
\begin{aligned}
\frac{L\left(\theta_{1} \mid y\right)}{L\left(\theta_{2} \mid y\right)} & =\frac{k(y)}{k(y)} \frac{P\left(y \mid \theta_{1}\right)}{P\left(y \mid \theta_{2}\right)} \\
& =\frac{P\left(y \mid \theta_{1}\right)}{P\left(y \mid \theta_{2}\right)}
\end{aligned}
$$

- Statistically, let $R=-2 \ln \left(\frac{L_{R}^{*}}{L^{*}}\right)=2\left(\ln L^{*}-\ln L_{R}^{*}\right)$, then - under H_{0} of no difference between the two models $-R$ is asymptotically χ^{2} distributed, with the degree of freedom equal to the number of restrictions.

Wald Test

- Is $\hat{\theta}_{j}$ systematically different from a theoretical θ^{*} ?
- Generalized version of a t-test.
- Let $\hat{\theta}_{j}$ the j th element of $\hat{\theta}, \hat{\sigma}_{j}$ its standard error, the square root of the j th diagonal element of the variance-covariance matrix. Then,

$$
\mathcal{W}=\frac{\hat{\theta}_{j}-\theta^{*}}{\hat{\sigma}_{j}}
$$

is asymptotically standard normal distributed, assuming $H_{0}: \theta_{j}=\theta^{*}$.

- For the formal Wald test, we can instead also use that $\mathcal{W}^{2} \sim \chi^{2}(1)$.

Score Test

- The score test is aka Lagrange multiplier test.
- Again, if the null is valid, i.e. $H_{0}: \theta_{j}=\theta^{*}$, then the restricted estimator should be near the point that maximizes the log-likelihood.
- Therefore, the respective slope should be near zero.
- Given that the score $S\left(\theta_{j}\right)$ is the slope of the log-likelihood at θ_{j}, it can be shown that the score statistic S with

$$
\mathcal{S}=\frac{S\left(\theta_{j}\right)}{\sqrt{\mathcal{I}\left(\theta_{j}\right)}}
$$

is asymptotically standard normal distributed, assuming $H_{0}: \theta_{j}=\theta^{*}$.

Overview: Statistical Inference using ML

(Figure is taken from Fox, Appendix D)

Figure D.19: Tests of the hypothesis $H_{0}: \alpha=\alpha_{0}$: The likelihood-ratio test compares $\log _{e} L(\widehat{\alpha})$ to $\log _{e} L\left(\alpha_{0}\right)$; the Wald test compares $\widehat{\alpha}$ to α_{0}; and the score test examines the slope of $\log _{e} L(\alpha)$ at $\alpha=\alpha_{0}$.

To sum-up

- If the ML model is correct, then $\hat{\theta}_{M L}$ is a consistent point estimate of θ.
- As the number of observations become large, ...
- ...the sampling distribution of $\hat{\theta}_{M L}$ becomes normal.
- ...the log-likelihood becomes quadratic.
- ...the assumed second-order approximation of the log-likelihood improves.
- There are also several numerical algorithms (e.g. Newton-Raphson, BHHH, Method of Scoring, L-BFGS-B, BFGS, simulated-annealing) to find a maximum and estimate the variance-covariance matrix.

Numerical Optimization

- Newton-Raphson works well and quickly for simple functions with global maxima
- Method of Scoring, BHHH and simulated-annealing can be better alternatives when likelihood is complex
- Some practical tips
- The likelihood can have local maxima or saddle points with which numerical algorithms have a hard time (because they "think" its a global maximum).
- Use different starting values. They should not matter if a global maximum is detected.
- Use OLS instead to find first reasonable parameter values.
- Graph LL by fixing all parameters (but 1 or 2) at reasonable values and graph the rest to eyeball maximum in order to find good starting values.
- When encountering convergence problems, ...
- ...you may delete missing values explicitly and try again.
- ...rescale the variables so that they are measured (ideally) on the same scale
- ...try another numerical algorithm

Implementation in R

Implementation in R

- Let's estimate a linear regression model via maximum likelihood instead of using ordinary least squares
- Step 1: Assume the following model:

$$
\begin{array}{ll}
Y_{i} \sim f_{N}\left(y_{i} \mid \mu_{i}, \sigma^{2}\right) & \text { stochastic } \\
\mu_{i}=X \beta\left(=\beta_{0}+\beta_{1} x_{i}\right) & \text { systematic }
\end{array}
$$

- The parameters we are going to estimate using the above parameterization are $\theta=\left(\mu_{i}, \sigma^{2}\right)=\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)$
- We further assume that y_{i} is iid.

Implementation in R

- Step 2: Using our assumptions about the model and the chosen parameterization of the systematic component, we can set up the likelihood function as follows:

$$
L\left(\beta, \sigma^{2} \mid y\right)=\left(2 \pi \sigma^{2}\right)^{-N / 2} \exp \left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}\right]
$$

- Then (although this is optional) we can take the log of the likelihood function, because it simplifies the next step (i.e. maximization):

$$
\begin{aligned}
\log L\left(\beta, \sigma^{2} \mid y\right) & =-\frac{N}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2} \\
& =-\frac{N}{2} \log (2 \pi)-\frac{N}{2} \log \left(\sigma^{2}\right)-\frac{1}{2} \sum_{i=1}^{N} \frac{\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}}{\sigma^{2}} \\
& =\quad-\frac{N}{2} \log \left(\sigma^{2}\right)-\frac{1}{2} \sum_{i=1}^{N} \frac{\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}}{\sigma^{2}}
\end{aligned}
$$

Implementation in R

- Now, let's write the log-likelihood as a R-function lm.lik:
lm.lik <- function(theta, y, x) \{
beta0 <- theta[1]
beta1 <- theta[2]
gamma <- theta[3]
\# Parametrize sigma2 to be non-negative sigma2 <- exp(gamma)
\# Residual
e <- y - beta0 - beta1*x
\# Log lik function for one observation
logl <- $-1 / 2 * \log ($ sigma2 $) ~-~ 1 / 2 *\left(e^{\wedge} 2 /(s i g m a 2)\right)$
\# Log lik function is sum over N observations
logl <- sum(logl)
return(logl)
\}

Implementation in R

```
- Here is a slightly more general code of the same likelihood:
lm.lik1 <-function(theta,y,X){
    N<-nrow(X) # number of observations
    k<-ncol(X) # number of parameters
    # Supstring paramters theta
        beta<-theta[1:k]
        gamma<-theta[k+1]
    # Parametrize sigma2 to be non-negative
        sigma2 <- exp(gamma)
# Residual
        e<- y-(X%*%beta)
    # Log lik function fover N observations
        logl <- - 1/2*N*log(sigma2)-1/2*((t(e)%*%e)/(sigma2))
    return(logl)
        }
```


Implementation in R

- Step 3: Maximize the log-likelihood numerically. Of course, we could do it analytically (see last week). Now we let the computer do all the work for us.
- R provides a tool named optim() which maximizes arbitrary functions numerically if we specify control=list ($\mathrm{fnscale}=-1$) (optim() tries to minimize by default).
- To maximize our likelihood function, we need to feed optim() with a set of starting values (the optim(stval, . . .)'s first guesses for the parameters).
stval <- c(1,1,1)
- Then we simply call optim() to maximize a likelihood function ($\mathrm{fn}=\mathrm{lm}$. lik), with particular starting values (stval) and data ($\mathrm{y}=\mathrm{y}, \mathrm{x}=\mathrm{x}$) res <- optim(stval, fn=lm.lik, control=list(fnscale=-1),

$$
y=y, x=x \text {, hessian=TRUE) }
$$

> res\$par

```
[1] 49.708304 1.125821 10.378797
> sqrt(diag(solve(-1 * res$hessian)))
[1] 1.6249732 0.4578586 3.7924240
```

- Take some data and see how our $\hat{\theta}_{M L}$ compares to $\hat{\theta}_{O L S}$!

Heteroskedastic Regression

Heteroskedastic Regression

- Now, what if we instead relax the homoskedasticity assumption?
- Step 1: Assume the following model:

$$
\begin{array}{rlr}
Y_{i} & \sim f_{N}\left(y_{i} \mid \mu_{i}, \sigma_{i}^{2}\right) & \\
\mu_{i} & =X \beta\left(=\beta_{0}+\beta_{1} x_{i}\right) & \text { stochastic } \\
\sigma_{i}^{2} & =\exp (\gamma Z)\left(=\exp \left(\gamma_{0}+\gamma_{1} z_{i}\right)\right) & \\
\text { systematic } \\
\text { syatic }
\end{array}
$$

- The parameters we are going to estimate using the above parametrization of the model's systematic component are $\theta=\left(\beta_{0}, \beta_{1}, \gamma_{0}, \gamma_{1}\right)$
- We further assume that the y_{i} are independently distributed.
- Thus, we get the following log-likelihood function:

$$
\begin{aligned}
\log L(\theta \mid y) & =-\frac{N}{2} \log (2 \pi)-\frac{1}{2} \sum_{i=1}^{N} \log \left(\sigma_{i}^{2}\right)-\frac{1}{2} \sum_{i=1}^{N} \frac{\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}}{\sigma_{i}^{2}} \\
& =\quad-\frac{1}{2} \sum_{i=1}^{N}\left(\gamma_{0}+\gamma_{1} z_{i}\right)-\frac{1}{2} \sum_{i=1}^{N} \frac{\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}}{\exp \left(\gamma_{0}+\gamma_{1} z_{i}\right)}
\end{aligned}
$$

Heteroskedastic Regression - Implementation in R

```
- Lets write the LL as a R-function hetero.lik, but this time with four arguments ( }0,y,x,z)
    hetero.lik <- function(theta, y, x, z) {
    beta0 <- theta[1]
    beta1 <- theta[2]
    gamma0 <- theta[3] # This line is new
    gamma1 <- theta[4] # This line is new
    # Residual
        e <- y - beta0 - beta1*x
    # Variance parameterization
        sigma2 = exp(gamma0 + gamma1*z) # This line is new
    # Log lik function for one observation
            logl <- -1/2*log(sigma2) - 1/2*(e^2/(sigma2))
    # Log lik function is sum over N observations
            logl <- sum(logl)
            return(logl)
        }
- Note, we need to feed optim( ) with four starting values!
```


Heteroskedastic Regression - Implementation in R

\# start values for maximization algorithm - now we need 4 values stval <- c (0,0,0,0)
\# maximize the likelihood function numerically using optim()

```
res2 <- optim(stval, # starting values
    fn=hetero.lik, # the likelihood function
    control=list(fnscale=-1), # maximize rather than minimize funct
    y=y, x=x, z=z, # the data
    hessian=TRUE) # return numerical Hessian
```

```
cat("MLE Betas\n", res2$par[1:2], "\n\n")
```

cat("MLE Betas\n", res2$par[1:2], "\n\n")
cat("MLE Gammas\n", (res2$par[3:4]), "\n\n")
cat("MLE Gammas\n", (res2$par[3:4]), "\n\n")
cat("Hessian\n")
cat("Hessian\n")
print(res2$hessian)
print(res2$hessian)
cat("\n MLE St. Errors\n", sqrt(diag(solve(-1*res2$hessian))), "\n\n")

```
cat("\n MLE St. Errors\n", sqrt(diag(solve(-1*res2$hessian))), "\n\n")
```

Quo vadis AQM

Infrastructure of "Advanced Quantitative Methods" Course

Three steps to come up with a suitable ML Estimator for your research question

1. Formulate a suitable probability model of the data-generating process including assumptions of how Y is distributed (i.e., stochastic component) and a parametrization of stuff that gets estimated (i.e., systematic component).
2. Write down the (log-)likelihood function based on your parametrization and assumptions.
3. Maximize the Log-Likelihood, analytically (often hard, even impossible) or numerically (use functions in R).

There are two more things we need to talk about this semester:

- Interpretation of estimation results through simulating quantities of interest (you have seen this last semester as well as in the lab)
- How to check whether the assumed model does fit the data? (Coming soon!)

Then, we can apply this infrastructure to any existing model or come-up with our own model.

