Advanced Quantitative Methods in Political Science: A first peek at Maximum Likelihood

Thomas Gschwend | Oliver Rittmann | Viktoriia Semenova
Week 4-9 March 2022

Leftovers

Relaxing the iid assumption

What if iid (independent identically distributed) assumption is unrealistic?

- Relax identical distribution assumption $\left(\pi_{i}=\pi\right)$ such that π is a random variable rather than being fixed, thus we need to find $P(\pi)$ and π falls in the interval $[0,1]$.
- Take Beta distribution, i.e., $P=B(\rho, \gamma)$, which can be very flexible (unimodal, bimodal, skewed). Also used to model proportions.
- One can show that relaxing the independence assumption by letting π vary according to the Beta distribution one gets the extended Beta-Binomial distribution Pebb.
- Combine (aka compound) Beta and Binomial distributions to get extended Beta-Binomial distribution $P_{\text {ebb }}\left(y_{i}, \pi \mid \gamma\right)$. γ represents the degree to which π varies across the unobserved realizations of the binary random variables. For $\gamma=0$ one arrives at the binomial distribution again.
- Example: Lauderdale, Benjamin E. (2012). Compound Poisson-Gamma Regression Models for Dollar Outcomes That Are Sometimes Zero. Political Analysis, 20(3), 387-399.

Multinomial Distribution

First Principle:

- Characteristics about the DGP that generates $Y=\left(y_{1}, \ldots, y_{k}\right)^{\prime} \sim \operatorname{Multinomial}\left(n, \pi_{1}, \ldots, \pi_{k}\right)$:
- n repeated, independent trials. Each trial has k mutually exclusive and exhaustive outcomes (say $\{1, \ldots, k\}$)
- Probability that outcome j occurs is $\pi_{j} \in[0,1]$ and $\sum_{j=1}^{k} \pi_{j}=1$
- Let y_{j} be a random variable counting how often outcome j occurs, thus $\sum_{j=1}^{k} y_{j}=n$.
- The pmf is:

$$
P\left(\left(y_{1}, y_{2}, \ldots, y_{k}\right)^{\prime}\right)=P\left(y \mid n, \pi_{1}, \ldots, \pi_{k}\right)=\frac{n!}{y_{1}!y_{2}!\ldots, y_{k}!} \pi_{1}^{y_{1}} \pi_{2}^{y_{2}} \cdots \pi_{k}^{y_{k}}
$$

- Example? How can it go wrong? What happens for $k=2$?
- $E\left(Y_{j}\right)=n \pi_{j}$ and $\operatorname{Var}\left(y_{j}\right)=n \pi_{j}\left(1-\pi_{j}\right)$

Further Univariate Probability Distributions

There are many, many other distributions (and compounds of them) as you can imagine. Just to name a few ...

- Poisson; Negative binomial for modeling counts - discrete, countably infinite, nonnegative
- Normal - continuous, unimodal, symmetric, unbounded
- Log-Normal; Gamma - continuous, unimodal, skewed, bounded from below by zero
- Truncated-Normal - continuous, unimodal, symmetric, bounded from below or above (or both)
- Multinomial for modeling discrete outcomes - discrete, unordered

Remember: Pick (or construct) a probability distribution to define the stochastic component of your model that best describes the potential values of your outcome variable (i.e., the sample space).

Likelihood as a Model of Inference

The Problem of Inference

Does the number of appointed woman judges reflect descriptive representation?

Second Senate of the Federal Constitutional Court

- How can we answer this question?
- What is the DGP and what is Y ?
- Which probability model (stochastic component)?
- Assumption 1: Decisions are made independent of every vacant position
- Assumption 2: Each decision has same underlying probability of choosing a women (identically distributed)
- The pdf of the Binomial: $P(Y=y \mid \pi)=\frac{N!}{y!(N-y)!} \pi^{y}(1-\pi)^{N-y}$.
- Thus, if $\pi_{0}=.5$, then: $P\left(\right.$ No. of women $\left.=2 \mid \pi_{0}=.5\right)=\frac{8!}{2!6!} \cdot .5^{2} \cdot .5^{6} \approx .109$
- Is that really what we wanted to know? In fact, we do not know which π generated our data, thus we need to estimate it and see to what degree it is different from $\pi_{0}=.5$.

The Likelihood Theory of Inference

- Conditional Probability: $\operatorname{Pr}(y \mid M)=\operatorname{Pr}($ known|unknown $)$
- We actually care about the so-called inverse probability: $\operatorname{Pr}(M \mid y)=\operatorname{Pr}($ unknown \mid known $)$ (and $P(M \mid y)$ if data is continuous)
- Or at least about: $\operatorname{Pr}\left(\theta \mid y, M^{*}\right)=\operatorname{Pr}(\theta \mid y)$, if $M=\left\{M^{*}, \theta\right\}$ where M^{*} is assumed and θ to be estimated.
- The solution turns out to be the likelihood, $L(\theta \mid y)$, defined as values proportional to the traditional probability (density) distribution for different values of θ.

$$
\begin{aligned}
L(\theta \mid y) & =k(y) \operatorname{Pr}(y \mid \theta) \\
& \propto \operatorname{Pr}(y \mid \theta)
\end{aligned}
$$

- Second line is a more convenient way to express the first line without the constant.
- $k(y)$ is a unknown function of the data, with θ fixed at its true value. It changes, if y changes.
- $L(\theta \mid y)$ is a function. For observed (i.e. fixed) y it returns the likelihood of any value θ (that generated the data y assuming M^{*}).

The Likelihood Theory of Inference

- When estimating competing models, the likelihood function gives us information about the relative plausibility of various parameter values conditional on the same observed data y
- Comparing the value of $L(\theta \mid y)$ for different θ 's in one data set y makes sense.
- Comparing the value of $L(\theta \mid y)$ for different θ 's across data sets is meaningless (similar to comparing R^{2} across OLS regression models with different DVs).
- The likelihood principle: the data only affect inferences through the likelihood function.
- The likelihood function is a summary estimator of θ. Given the likelihood principle this means, that once plotted, we can discard the data (if the model is correct, i.e. inferences are still model dependent).

The Likelihood Theory of Inference

- The maximum is a one-point summary of the
 likelihood function and is called Maximum Likelihood estimate $\hat{\theta}_{\text {ML }}$.
- The uncertainty of this point estimate is represented by the curvature at the maximum.
- For analytical tractability or numerical stability the log-likelihood is typically used instead of the likelihood.
- The log-transformation changes the shape of the likelihood, however, the maximum will be the same.
- The value of θ for which the observed data y are most likely (i.e. have highest probability of being observed) is called the maximum likelihood estimate.
- In our (univariate) example $\theta=\pi$, thus $L(\theta \mid y)=L(\pi \mid y=2, N=8)$.

The Likelihood of Our Example

How does the likelihood function $L(\pi \mid y=2, N=8)$ of our example look like?

The Likelihood of Our Example

How does the likelihood function $L(\pi \mid y=2, N=8)$ of our example look like?

$$
L(\pi \mid y=2, N=8)=\frac{8!}{2!6!} \pi^{2}(1-\pi)^{6}
$$

Maximizing the Likelihood

How to maximize the likelihood function $L(\pi \mid y=2, N=8)$?

Maximizing the Likelihood

How to maximize the likelihood function $L(\pi \mid y=2, N=8)$?

$$
\begin{aligned}
L(\pi \mid y=2, N=8) & =\frac{8!}{2!6!} \pi^{2}(1-\pi)^{6}=28 \pi^{2}(1-\pi)^{6} \\
\frac{\partial L(\pi)}{\partial \pi} & =56 \pi \cdot(1-\pi)^{6}-168 \pi^{2} \cdot(1-\pi)^{5}
\end{aligned}
$$

Maximizing the Likelihood

How to maximize the likelihood function $L(\pi \mid y=2, N=8)$?

$$
\begin{aligned}
L(\pi \mid y=2, N=8) & =\frac{8!}{2!6!} \pi^{2}(1-\pi)^{6}=28 \pi^{2}(1-\pi)^{6} \\
\frac{\partial L(\pi)}{\partial \pi} & =56 \pi \cdot(1-\pi)^{6}-168 \pi^{2} \cdot(1-\pi)^{5}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial L(\pi)}{\partial \pi} & =0 \Longleftrightarrow \\
56 \pi \cdot(1-\pi)^{6}-168 \pi^{2} \cdot(1-\pi)^{5} & =0
\end{aligned}
$$

After some tedious algebra one obtains $\hat{\pi}_{M L}=$

Maximizing the Likelihood

How to maximize the likelihood function $L(\pi \mid y=2, N=8)$?

$$
\begin{aligned}
L(\pi \mid y=2, N=8) & =\frac{8!}{2!6!} \pi^{2}(1-\pi)^{6}=28 \pi^{2}(1-\pi)^{6} \\
\frac{\partial L(\pi)}{\partial \pi} & =56 \pi \cdot(1-\pi)^{6}-168 \pi^{2} \cdot(1-\pi)^{5}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial L(\pi)}{\partial \pi} & =0 \Longleftrightarrow \\
56 \pi \cdot(1-\pi)^{6}-168 \pi^{2} \cdot(1-\pi)^{5} & =0
\end{aligned}
$$

After some tedious algebra one obtains $\hat{\pi}_{M L}=.25$ (...tada!).

Easier Way: Maximizing the Log-Likelihood

How to find the maximum of the log-likelihood function $\log (L(\pi \mid y=2, N=8))$?

$$
\begin{aligned}
\log (L(\pi \mid y=2, N=8)) & =\log \left(28 \pi^{2}(1-\pi)^{6}\right) \\
& =\log (28)+2 \log (\pi)+6 \log (1-\pi)
\end{aligned}
$$

Easier Way: Maximizing the Log-Likelihood

$\hat{\pi}_{M L}$ fulfills the first-order condition of the log-likelihood

$$
\begin{aligned}
\frac{\partial \log L(\pi)}{\partial \pi}=\frac{\partial(\log (28)+2 \log (\pi)+6 \log (1-\pi))}{\partial \pi} & =0 \Longleftrightarrow \\
\frac{2}{\pi}-\frac{6}{1-\pi} & =0 \\
\frac{2}{\pi} & =\frac{6}{1-\pi} \\
2(1-\pi) & =6 \pi \\
2 & =8 \pi \\
1 / 4 & =\pi
\end{aligned}
$$

Thus, one obtains the same $\hat{\pi}_{M L}=.25$ through maximizing the log-likelihood.

Back to our substantive (univariate) example

Does the number of appointed woman judges reflect descriptive representation?

- Take a look at the likelihood ratio, which corresponds to the ratio of the traditional probabilities (Why?)
- Recall:

$$
\frac{L\left(\pi_{0}=.5 \mid y=2, N=8\right)}{L\left(\hat{\pi}_{M L} \mid y=2, N=8\right)} \approx \frac{.109}{.311} \approx .35
$$

Second Senate of the Federal Constitutional Court

- The likelihood for gender reflection $L\left(\pi_{0}\right)$ is 35 percent of the maximum $L\left(\hat{\pi}_{M L}\right)$.
- Thus, it seems very unlikely that the appointment process is driven exclusively by concerns of descriptive representation.

MLE and the Linear Regression Model

- Suppose we have observed independently the following government approval ratings:

$$
Y=\{54,53,49,61,58, \cdots\}
$$

- First step: How is the DGP and how is Y distributed? Suppose:

$$
\begin{array}{ll}
Y_{i} \sim f_{N}\left(y_{i} \mid \mu_{i}, \sigma^{2}\right) & \text { stochastic } \\
\mu_{i}=X_{i} \beta & \text { systematic }
\end{array}
$$

- We have some observations (assuming iid) Y and we want to estimate μ_{i} and σ^{2}.
- Second step: Choose a parametrization of the stuff you would like to estimate. For now we model only μ_{i} (see above) with covariates. However, we will also (next week!) parameterize the variance to model heteroskedasticity.
- Third step: Maximum Likelihood Estimation implies that we need to find those parameter values (β, σ^{2}) of our chosen (assumed) stochastic component that maximizes the respective likelihood function conditional on the data we have.
- Thus, lets construct the respective likelihood function.

How does the Likelihood function look like?

- We assumed that Y_{i} is distributed normal $\left(Y_{i} \sim f_{N}\left(y_{i} \mid \mu_{i}, \sigma^{2}\right)\right.$), hence for ith observation y_{i} we get

$$
\operatorname{Pr}\left(Y_{i}=y_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(Y_{i}-\mu_{i}\right)^{2}}{2 \sigma^{2}}\right)
$$

- Recall that we also assumed Y_{i} to be iid, thus for instance

$$
\operatorname{Pr}\left(Y_{1}=54, Y_{2}=53\right)=\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{2} \times \exp \left(-\frac{\left(54-\mu_{1}\right)^{2}}{2 \sigma^{2}}\right) \times \exp \left(-\frac{\left(53-\mu_{2}\right)^{2}}{2 \sigma^{2}}\right)
$$

- Thus, for N realizations (observations) of iid random variables we get

$$
\operatorname{Pr}\left(Y_{1}, \cdots, Y_{N}\right)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(Y_{i}-\mu_{i}\right)^{2}}{2 \sigma^{2}}\right)
$$

How does the Likelihood function look like?

- Applying our parameterization for μ_{i} the likelihood of the entire sample is

$$
L\left(\beta, \sigma^{2} \mid y, X\right)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{i}-x_{i} \beta\right)^{2}}{2 \sigma^{2}}\right)
$$

- Or equivalently in matrix notation

$$
L\left(\beta, \sigma^{2} \mid y, X\right)=\frac{1}{\left(\sqrt{2 \pi \sigma^{2}}\right)^{N}} \exp \left(-\frac{1}{2 \sigma^{2}}(y-x \beta)^{\prime}(y-x \beta)\right)
$$

How does the Log-Likelihood function look like?

- Now taking the logs (rather $\ln (\cdot))$ yields

$$
\begin{aligned}
L\left(\beta, \sigma^{2} \mid y, x\right) & =\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{i}-x_{i} \beta\right)^{2}}{2 \sigma^{2}}\right) \\
\ln L\left(\beta, \sigma^{2} \mid y, x\right) & =\sum_{i=1}^{N} \ln \left[\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{i}-x_{i} \beta\right)^{2}}{2 \sigma^{2}}\right)\right] \\
& =-\frac{N}{2} \ln (2 \pi)-\frac{N}{2} \ln \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(y_{i}-x_{i} \beta\right)^{2} \\
& =(\cdot)+(\cdot) \beta-\left(\frac{\sum_{i=1}^{N} x_{i}^{2}}{2 \sigma^{2}}\right) \beta^{2}
\end{aligned}
$$

- Or equivalently in matrix notation

$$
\ln L\left(\beta, \sigma^{2} \mid y, x\right)=-\frac{N}{2} \ln (2 \pi)-\frac{N}{2} \ln \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(y-x \beta)^{\prime}(y-x \beta)
$$

Finding the ML Estimator

- While oftentimes not possible (numerical solutions have to be used instead) in this case we can find a closed form solution $\left(\hat{\theta}_{M L}=\left(\hat{\beta}_{M L}, \hat{\sigma}_{M L}\right)^{\prime}\right)$ of the parameters that most-likely generated the data.
- We start with taking the log-likelihood in matrix notation. By expanding the last term we get

$$
\ln L\left(\beta, \sigma^{2} \mid y, X\right)=-\frac{N}{2} \ln (2 \pi)-\frac{N}{2} \ln \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(y^{\prime} y-2 y^{\prime} x \beta+\beta^{\prime} x^{\prime} x \beta\right)
$$

- Now we need to take the (partial) derivatives of $\ln L$ with respect to β and σ^{2} (the entries of the so-called gradient vector) and set them equal to zero.

Finding $\hat{\beta}_{M L}$

Taking the derivative of the log-likelihood with respect to β yields

$$
\begin{aligned}
\frac{\partial \operatorname{lnL}}{\partial \beta} & =-\frac{1}{2 \sigma^{2}} \frac{\partial\left(y^{\prime} y-2 y^{\prime} X \beta+\beta^{\prime} X^{\prime} X \beta\right)}{\partial \beta} \\
& =-\frac{1}{2 \sigma^{2}}\left(-2 X^{\prime} y+2 X^{\prime} X \beta\right) \\
& =\frac{1}{\sigma^{2}}\left(X^{\prime} y-X^{\prime} X \beta\right)
\end{aligned}
$$

We now set this equal to zero:

$$
\begin{aligned}
\frac{1}{\sigma^{2}}\left(X^{\prime} y-X^{\prime} X \beta\right) & =0 \\
X^{\prime} X \beta & =X^{\prime} y \\
\hat{\beta}_{M L} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y
\end{aligned}
$$

This is the familiar formula we know from the OLS coefficient vector. Thus, $\hat{\beta}_{M L}=\hat{\beta}_{0 L S}$.

Finding $\hat{\sigma}_{M L}^{2}$

Taking the derivative of the log-likelihood with respect to σ^{2} yields

$$
\begin{aligned}
\ln L & =-\frac{N}{2} \ln (2 \pi)-\frac{N}{2} \ln \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-x \beta) \\
\frac{\partial \ln L}{\partial \sigma^{2}} & =-\frac{N}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}}(y-X \beta)^{\prime}(y-X \beta)
\end{aligned}
$$

We now set this equal to zero:

$$
\begin{aligned}
-\frac{N}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}}(y-x \beta)^{\prime}(y-x \beta) & =0 \\
\frac{1}{2 \sigma^{4}}(y-X \beta)^{\prime}(y-x \beta) & =\frac{N}{2 \sigma^{2}} \\
\frac{1}{\sigma^{2}}(y-x \beta)^{\prime}(y-x \beta) & =N
\end{aligned}
$$

Since we have already $\hat{\beta}$, we can substitute this in $(\beta=\hat{\beta})$ and solve for σ^{2} :

$$
\begin{aligned}
\frac{1}{\sigma^{2}}\left(e^{\prime} e\right) & =N \\
\hat{\sigma}_{M L}^{2} & =\frac{e^{\prime} e}{N}
\end{aligned}
$$

Comparing $\hat{\sigma}_{M L}^{2}$ with $\hat{\sigma}_{O L S}^{2}$

- While $\hat{\sigma}_{M L}^{2}=\frac{e^{\prime} e}{N}$, recall that the OLS estimate of the variance, $\hat{\sigma}_{O L S}^{2}=\frac{e^{\prime} e}{N-(k+1)}$, is unbiased.
- Thus, $\hat{\sigma}_{M L}^{2} \neq \hat{\sigma}_{O L S}^{2}$
- Moreover, $\hat{\sigma}_{M L}^{2}$ is biased downwards in small samples.
- However, $\hat{\sigma}_{M L}^{2}$ and $\hat{\sigma}_{O L S}^{2}$ are asymptotically equivalent, i.e., they converge as N goes to infinity.

MLE and Statistical Inference

Properties of the Maximum (i.e. of $\hat{\theta}_{M L}$)

Small Sample Properties

- Invariance to reparameterization
- Rather than estimating a parameter $\hat{\theta}_{M L}$, one can first estimate a function $g\left(\hat{\theta}_{M L}\right)$, which is also a ML estimator.
- In a second step, recover $\hat{\theta}_{M L}$ from $g\left(\hat{\theta}_{M L}\right)$.
- Very useful because $g\left(\hat{\theta}_{M L}\right)$ might be easier derived, or has an more intuitive interpretation (see e.g., King \& Browning's 1987 APSR)
- Allows for transformation of parameters (logit transformation of probabilities; logarithmic transformation of variances; Fisher z-transformation of correlations)
- Invariance to sampling plans
- Information about how data is collected (e.g., sample size) that does not affect the likelihood is irrelevant.
- OK to look at results while deciding how much (further) data to collect.
- Allowed to pool data (if independent, just add LL to the existing one!) to get more precise estimates
- Minimum Variance Unbiased Estimator (MVUE)

Asymptotic Properties (think of repeated sampling, i.e., let $\left\{\hat{\theta}_{N}\right\}$ be a sequence of estimators calculated in the same way from larger and larger samples of size N. For each sample size, $\hat{\theta}_{N}$ has a sampling distribution)

- Consistency
- From the Law of Large Numbers, as $N \rightarrow \infty$, the sampling distribution of $\hat{\theta}_{M L}$ collapses to a spike over the (true) parameter value θ.
- Asymptotic normality
- From the Central Limit Theorem, as $N \rightarrow \infty$, the sampling distribution of $\hat{\theta}_{M L} / \operatorname{se}\left(\hat{\theta}_{M L}\right)$ converges to the normal distribution (Mean?, Variance?).
- No matter what distribution we assumed in the model for θ itself!
- Allows us to do hypothesis testing and to construct confidence intervals.
- Asymptotic efficiency
- Among all consistent, asymptotically normal distributed estimators, $\hat{\theta}_{M L}$ has the smallest variance.
- $\hat{\theta}_{\text {ML }}$ contains as much information as can be packed into a point estimator.

