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Leftovers



Relaxing the iid assumption

What if iid (independent identically distributed) assumption is unrealistic?

• Relax identical distribution assumption (πi = π) such that π is a random variable
rather than being fixed, thus we need to find P(π) and π falls in the interval [0,1].

• Take Beta distribution, i.e., P = B(ρ, γ), which can be very flexible (unimodal, bimodal,
skewed). Also used to model proportions.

• One can show that relaxing the independence assumption by letting π vary according
to the Beta distribution one gets the extended Beta-Binomial distribution Pebb.

• Combine (aka compound) Beta and Binomial distributions to get extended Beta-Binomial
distribution Pebb(yi, π|γ). γ represents the degree to which π varies across the
unobserved realizations of the binary random variables. For γ = 0 one arrives at the
binomial distribution again.

• Example: Lauderdale, Benjamin E. (2012). Compound Poisson-Gamma Regression
Models for Dollar Outcomes That Are Sometimes Zero. Political Analysis, 20(3),
387–399.

AQM 2022 | A first peek at Maximum Likelihood 2



Multinomial Distribution

First Principle:

• Characteristics about the DGP that generates
Y = (y1, . . . , yk)′ ∼ Multinomial(n, π1, . . . , πk):

• n repeated, independent trials. Each trial has k mutually exclusive and exhaustive
outcomes (say {1, . . . , k})

• Probability that outcome j occurs is πj ∈ [0,1] and
∑k

j=1 πj = 1
• Let yj be a random variable counting how often outcome j occurs, thus

∑k
j=1 yj = n.

• The pmf is:

P((y1, y2, . . . , yk)′) = P(y|n, π1, . . . , πk) =
n!

y1!y2! . . . , yk!
πy11 π

y2
2 · · ·πykk

• Example? How can it go wrong? What happens for k = 2?

• E(Yj) = nπj and Var(yj) = nπj(1− πj)
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Further Univariate Probability Distributions

There are many, many other distributions (and compounds of them) as you can imagine.
Just to name a few ...

• Poisson; Negative binomial for modeling counts - discrete, countably infinite,
nonnegative

• Normal - continuous, unimodal, symmetric, unbounded
• Log-Normal; Gamma - continuous, unimodal, skewed, bounded from below by zero
• Truncated-Normal - continuous, unimodal, symmetric, bounded from below or above
(or both)

• Multinomial for modeling discrete outcomes - discrete, unordered

Remember: Pick (or construct) a probability distribution to define the stochastic
component of your model that best describes the potential values of your outcome
variable (i.e., the sample space).
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Likelihood as a Model of Inference



The Problem of Inference

Does the number of appointed woman judges reflect descriptive representation?

	
  

Second	
  Senate	
  of	
  the	
  Federal	
  Constitutional	
  Court	
  

• How can we answer this question?
• What is the DGP and what is Y?
• Which probability model (stochastic component)?
• Assumption 1: Decisions are made independent of
every vacant position

• Assumption 2: Each decision has same underlying
probability of choosing a women (identically
distributed)

• The pdf of the Binomial: P(Y = y|π) = N!
y!(N−y)!π

y(1− π)N−y.
• Thus, if π0 = .5, then: P( No. of women = 2|π0 = .5) = 8!

2!6! · .5
2 · .56 ≈ .109

• Is that really what we wanted to know? In fact, we do not know which π generated our data, thus we need
to estimate it and see to what degree it is different from π0 = .5.
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The Likelihood Theory of Inference

• Conditional Probability: Pr(y|M) = Pr(known|unknown)
• We actually care about the so-called inverse probability:
Pr(M|y) = Pr(unknown|known) (and P(M|y) if data is continuous)

• Or at least about: Pr(θ|y,M∗) = Pr(θ|y), if M = {M∗, θ} where M∗ is assumed and θ to
be estimated.

• The solution turns out to be the likelihood, L(θ|y), defined as values proportional to
the traditional probability (density) distribution for different values of θ.

L(θ|y) = k(y)Pr(y|θ)
∝ Pr(y|θ)

- Second line is a more convenient way to express the first line without the constant.
- k(y) is a unknown function of the data, with θ fixed at its true value. It changes, if y changes.
- L(θ|y) is a function. For observed (i.e. fixed) y it returns the likelihood of any value θ (that generated
the data y assuming M∗).
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The Likelihood Theory of Inference
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• When estimating competing models, the likelihood
function gives us information about the relative
plausibility of various parameter values conditional
on the same observed data y

• Comparing the value of L(θ|y) for different θ’s in one
data set y makes sense.

• Comparing the value of L(θ|y) for different θ’s across
data sets is meaningless (similar to comparing R2
across OLS regression models with different DVs).

• The likelihood principle: the data only affect inferences through the likelihood function.

• The likelihood function is a summary estimator of θ. Given the likelihood principle this means, that once
plotted, we can discard the data (if the model is correct, i.e. inferences are still model dependent).
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The Likelihood Theory of Inference
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• The maximum is a one-point summary of the
likelihood function and is called Maximum
Likelihood estimate θ̂ML.

• The uncertainty of this point estimate is represented
by the curvature at the maximum.

• For analytical tractability or numerical stability the
log-likelihood is typically used instead of the
likelihood.

• The log-transformation changes the shape of the
likelihood, however, the maximum will be the same.

• The value of θ for which the observed data y are most likely (i.e. have highest
probability of being observed) is called the maximum likelihood estimate.

• In our (univariate) example θ = π, thus L(θ|y) = L(π|y = 2,N = 8).
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The Likelihood of Our Example

How does the likelihood function L(π|y = 2,N = 8) of our example look like?
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The Likelihood of Our Example

How does the likelihood function L(π|y = 2,N = 8) of our example look like?

L(π|y = 2,N = 8) = 8!
2!6!π

2(1− π)6
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π= 0.25
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Maximizing the Likelihood

How to maximize the likelihood function L(π|y = 2,N = 8)?
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Maximizing the Likelihood

How to maximize the likelihood function L(π|y = 2,N = 8)?

L(π|y = 2,N = 8) =
8!
2!6!π

2(1− π)6 = 28π2(1− π)6

∂L(π)
∂π

= 56π · (1− π)6 − 168π2 · (1− π)5
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Maximizing the Likelihood

How to maximize the likelihood function L(π|y = 2,N = 8)?

L(π|y = 2,N = 8) =
8!
2!6!π

2(1− π)6 = 28π2(1− π)6

∂L(π)
∂π

= 56π · (1− π)6 − 168π2 · (1− π)5

∂L(π)
∂π

= 0 ⇐⇒

56π · (1− π)6 − 168π2 · (1− π)5 = 0

After some tedious algebra one obtains π̂ML =
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Maximizing the Likelihood

How to maximize the likelihood function L(π|y = 2,N = 8)?

L(π|y = 2,N = 8) =
8!
2!6!π

2(1− π)6 = 28π2(1− π)6

∂L(π)
∂π

= 56π · (1− π)6 − 168π2 · (1− π)5

∂L(π)
∂π

= 0 ⇐⇒

56π · (1− π)6 − 168π2 · (1− π)5 = 0

After some tedious algebra one obtains π̂ML =.25 (…tada!).
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Easier Way: Maximizing the Log-Likelihood

How to find the maximum of the log-likelihood function log(L(π|y = 2,N = 8))?

log(L(π|y = 2,N = 8)) = log(28π2(1− π)6)

= log(28) + 2log(π) + 6log(1− π)
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Easier Way: Maximizing the Log-Likelihood

π̂ML fulfills the first-order condition of the log-likelihood

∂logL(π)
∂π

=
∂ (log(28) + 2log(π) + 6log(1− π))

∂π
= 0 ⇐⇒

2
π
− 6
1− π

= 0

2
π

=
6

1− π
2(1− π) = 6π

2 = 8π
1/4 = π

Thus, one obtains the same π̂ML =.25 through maximizing the log-likelihood.
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Back to our substantive (univariate) example

Does the number of appointed woman judges reflect descriptive representation?

	
  

Second	
  Senate	
  of	
  the	
  Federal	
  Constitutional	
  Court	
  

• Take a look at the likelihood ratio,
which corresponds to the ratio of the
traditional probabilities (Why?)

• Recall:

L(π0 = .5|y = 2,N = 8)
L(π̂ML|y = 2,N = 8) ≈ .109

.311 ≈ .35

• The likelihood for gender reflection L(π0) is 35 percent of the maximum L(π̂ML).
• Thus, it seems very unlikely that the appointment process is driven exclusively by
concerns of descriptive representation.
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MLE and the Linear Regression Model

• Suppose we have observed independently the following government approval
ratings:

Y = {54, 53, 49, 61, 58, · · · }
• First step: How is the DGP and how is Y distributed? Suppose:

Yi ∼ fN(yi|µi, σ2) stochastic
µi = Xiβ systematic

• We have some observations (assuming iid) Y and we want to estimate µi and σ2.
• Second step: Choose a parametrization of the stuff you would like to estimate. For
now we model only µi (see above) with covariates. However, we will also (next week!)
parameterize the variance to model heteroskedasticity.

• Third step: Maximum Likelihood Estimation implies that we need to find those
parameter values (β, σ2) of our chosen (assumed) stochastic component that
maximizes the respective likelihood function conditional on the data we have.

• Thus, lets construct the respective likelihood function.
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How does the Likelihood function look like?

• We assumed that Yi is distributed normal (Yi ∼ fN(yi|µi, σ2) ), hence for ith
observation yi we get

Pr(Yi = yi) =
1√
2πσ2

exp
(
− (Yi − µi)

2

2σ2

)
• Recall that we also assumed Yi to be iid, thus for instance

Pr(Y1 = 54,Y2 = 53) =
(

1
√
2πσ2

)2
× exp

(
−
(54− µ1)2

2σ2

)
× exp

(
−
(53− µ2)2

2σ2

)

• Thus, for N realizations (observations) of iid random variables we get

Pr(Y1, · · · ,YN) =
N∏
i=1

1√
2πσ2

exp
(
− (Yi − µi)

2

2σ2

)
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How does the Likelihood function look like?

• Applying our parameterization for µi the likelihood of the entire sample is

L(β, σ2|y, X) =
N∏
i=1

1√
2πσ2

exp
(
− (yi − xiβ)2

2σ2

)
• Or equivalently in matrix notation

L(β, σ2|y, X) = 1
(
√
2πσ2)N

exp(− 1
2σ2 (y− Xβ)′(y− Xβ))
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How does the Log-Likelihood function look like?

• Now taking the logs (rather ln(·)) yields

L(β, σ2|y, X) =
N∏
i=1

1√
2πσ2

exp
(
− (yi − xiβ)2

2σ2

)

lnL(β, σ2|y, X) =
N∑
i=1

ln
[

1√
2πσ2

exp
(
− (yi − xiβ)2

2σ2

)]

= −N2 ln(2π)−
N
2 ln(σ

2)− 1
2σ2

N∑
i=1

(yi − xiβ)2

= (·) + (·)β − (

∑N
i=1 x2i
2σ2 )β2

• Or equivalently in matrix notation

lnL(β, σ2|y, X) = −N2 ln(2π)−
N
2 ln(σ

2)− 1
2σ2 (y− Xβ)′(y− Xβ)
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Finding the ML Estimator

• While oftentimes not possible (numerical solutions have to be used instead) in this
case we can find a closed form solution (θ̂ML = (β̂ML, σ̂ML)

′) of the parameters that
most-likely generated the data.

• We start with taking the log-likelihood in matrix notation. By expanding the last term
we get

lnL(β, σ2|y, X) = −N2 ln(2π)−
N
2 ln(σ

2)− 1
2σ2 (y

′y− 2y′Xβ + β′X′Xβ)

• Now we need to take the (partial) derivatives of lnL with respect to β and σ2 (the
entries of the so-called gradient vector) and set them equal to zero.

AQM 2022 | A first peek at Maximum Likelihood 22



Finding β̂ML

Taking the derivative of the log-likelihood with respect to β yields
∂lnL
∂β

= − 1
2σ2

∂(y′y− 2y′Xβ + β′X′Xβ)
∂β

= − 1
2σ2 (−2X

′y+ 2X′Xβ)

=
1
σ2

(X′y− X′Xβ)

We now set this equal to zero:
1
σ2

(X′y− X′Xβ) = 0

X′Xβ = X′y
β̂ML = (X′X)−1X′y

This is the familiar formula we know from the OLS coefficient vector. Thus, β̂ML = β̂OLS.
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Finding σ̂2ML

Taking the derivative of the log-likelihood with respect to σ2 yields

lnL = −N2 ln(2π)−
N
2 ln(σ

2)− 1
2σ2 (y− Xβ)′(y− Xβ)

∂lnL
∂σ2

= − N
2σ2 +

1
2σ4 (y− Xβ)′(y− Xβ)

We now set this equal to zero:
−

N
2σ2

+
1
2σ4

(y− Xβ)′(y− Xβ) = 0

1
2σ4

(y− Xβ)′(y− Xβ) =
N
2σ2

1
σ2

(y− Xβ)′(y− Xβ) = N

Since we have already β̂, we can substitute this in (β = β̂) and solve for σ2:
1
σ2

(e′e) = N

σ̂2ML =
e′e
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Comparing σ̂2ML with σ̂2OLS

• While σ̂2ML =
e′e
N , recall that the OLS estimate of the variance, σ̂

2
OLS =

e′e
N−(k+1) , is

unbiased.

• Thus, σ̂2ML ̸= σ̂2OLS

• Moreover, σ̂2ML is biased downwards in small samples.

• However, σ̂2ML and σ̂2OLS are asymptotically equivalent, i.e., they converge as N goes to
infinity.
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MLE and Statistical Inference



Properties of the Maximum (i.e. of θ̂ML)

Small Sample Properties

• Invariance to reparameterization
• Rather than estimating a parameter θ̂ML, one can first estimate a function g(θ̂ML), which is
also a ML estimator.

• In a second step, recover θ̂ML from g(θ̂ML).
• Very useful because g(θ̂ML) might be easier derived, or has an more intuitive
interpretation (see e.g., King & Browning’s 1987 APSR)

• Allows for transformation of parameters (logit transformation of probabilities;
logarithmic transformation of variances; Fisher z-transformation of correlations)

• Invariance to sampling plans
• Information about how data is collected (e.g., sample size) that does not affect the
likelihood is irrelevant.

• OK to look at results while deciding how much (further) data to collect.
• Allowed to pool data (if independent, just add LL to the existing one!) to get more precise
estimates

• Minimum Variance Unbiased Estimator (MVUE)
• A single unbiased estimator with smallest variance (not necessarily linear!).
• If there is one, ML will find it. Thus, ML might find also non-linear MVUE’s.
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Properties of the Maximum (i.e. of θ̂ML)

Asymptotic Properties (think of repeated sampling, i.e., let {θ̂N} be a sequence of
estimators calculated in the same way from larger and larger samples of size N. For each
sample size, θ̂N has a sampling distribution)

• Consistency
• From the Law of Large Numbers, as N→ ∞, the sampling distribution of θ̂ML collapses to
a spike over the (true) parameter value θ.

• Asymptotic normality
• From the Central Limit Theorem, as N→ ∞, the sampling distribution of θ̂ML/se(θ̂ML)
converges to the normal distribution (Mean?, Variance?).

• No matter what distribution we assumed in the model for θ itself!
• Allows us to do hypothesis testing and to construct confidence intervals.

• Asymptotic efficiency
• Among all consistent, asymptotically normal distributed estimators, θ̂ML has the smallest
variance.

• θ̂ML contains as much information as can be packed into a point estimator.
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