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Final Paper



A Word on the Final Paper

• Do you have a coauthor already? (Full rather than draft paper with more than two
authors)

• Track-down an article that (1) interests you and (2) has a replication data set
available (e.g., AJPS dataverse)

• Recent APSR, AJPS and JoP articles have typically the best quality (and available data sets)
• Be efficient. Avoid collecting your own data for this paper.

• The grade of the paper is independent from the statistical model you use.
• No Compound Poisson-Gamma Regression Models and the like are necessary
• You need to make a substantive point using advanced statistical methods (i.e., no
OLS!)

• In Homework 4 (?) you need to provide an abstract of your paper project. Come and
talk to me about this before that, i.e. no later than week 6.
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Introduction



What should you take home from this class today?

• You will learn that pdf’s are your friends. They allow you to calculate probability
statements for anything you want.

• We will also learn to appreciate simulation as a tool to calculate such probability
statements.
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Probability as a Model of
Uncertainty



Probability Theory - Why should we care?

• Probability theory important tool to translate political science theories into
appropriate statistical models.

• Three steps to generate a statistical model:

(1) What is the data-generating process (DGP)?
(2) Build an appropriate probability model that reflects the assumed DGP including

assumptions of how Y is distributed (i.e., stochastic component)
(3) Come-up with systematic component including a parameterization of the stuff that gets

estimated and a theory of inference to derive statistical model
• Thus, a generalized notation for most statistical models is:

Yi ∼ f(yi|θi, α) stochastic
θi = g(Xi, β) systematic

• Estimation uncertainty: Lack of knowledge about parameters (β, α).
• Fundamental uncertainty: Represented by the stochastic component.

• No need to fit data to existing but inappropriate statistical model
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Probability - a model of uncertainty

• Pr(y|M) = Pr(data|Model), where M = (f,g, X, β, α)
• Probabilities are real numbers Pr(A) assigned to every event A of the sample space
Ω. The sample space can be discrete (e.g., vote-choice), countably infinite (e.g., no. of
conflicts), or assumed to be continuous (e.g., duration of governments).

• The sample space is relevant to us because we need to chose the stochastic
component of our model such that it describes the sample space.

• Three axioms:

(a) For every A ∈ Ω holds Pr(A) ≥ 0: Probabilities are non-negative
(b) Pr(Ω) = 1: The total probability is 1
(c) If A1, . . . , Ak are mutually exclusive events, then

Pr(A1 ∪ · · · ∪ Ak) = Pr(A1) + · · ·+ Pr(Ak)
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Definition of Probabilities

• Conditional probability: the probability that event B occurs given that we know A:

Pr(B|A) = Pr(A ∩ B)
Pr(A)

• Independent events (or joint probability of stochastically independent RVs):

Pr(A,B) = Pr(A ∩ B) = Pr(A)Pr(B)

• Conditionally independent events:

Pr(A,B|C) = Pr(A ∩ B|C) = Pr(A|C)Pr(B|C)

• Law of Total Probability: If A1, . . . ,Ak are a disjoint partition of the sample space Ω,
then

Pr(B) =
n∑
i=1

Pr(B|Ai)Pr(Ai)
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How to solve probability problems?

• If you like math and the problem is not too hard, do this analytically (e.g., Pr(rolling a
1 or rolling a 2) =?)

• You can also use simulation to solve probability problems (e.g., take 1000 draws with
replacement, assign 1 or 0, sum up, divide by 1000, voila!). The result of the
simulation will be close to the analytical result. In fact, take more draws to get even
closer.

• Research shows that students get it right more often when using simulation rather
than math.
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The Birthday Problem

Given a room with 24 randomly selected students, what is the probability that at least
two have the same birthday?
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The Birthday Problem

Given a room with 24 randomly selected students, what is the probability that at least
two have the same birthday?

sims <- 1000
students <- 24
days <- seq(1, 365, 1)
sameday <- 0

for (i in 1:sims){
room <- sample(days, students, replace = TRUE)
if (length(unique(room)) < students)
sameday <- sameday+1
}

cat("Pr(>=2 students same birthday):", sameday/sims, "\n")
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Probability Density Functions



What is a Probability Density?

A probability density (probability mass) is a function, P(Y), such that

1. Sum over all possible Y is 1
• If Y discrete:

∑
Y P(Y) = 1 (pmf)

• If Y continuos:
∫∞
−∞ P(Y) dY = 1 (pdf)

2. P(Y) ≥ 0 for every Y.

The cool thing about probability densities is that once you have it we can characterize all
possible outcomes with it. For instance, we can compute probability statements.

• Pr(a ≤ Y ≤ b) =
∫ b
a P(Y) dY

• Pr(Y = y) = P(Y = y) if Y discrete
• Pr(Y = y) = 0 if Y continuous
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Examples: Uniform Density on [0,1]

The DGP of Yi is such that

• Yi falls within the interval [0,1] with probability 1:
∫ 1
0 P(y)dy = 1

• Pr(Y ∈ (a,b)) = Pr(Y ∈ (c,d)) if a < b, c < d, and b− a = d− c.

• Why is it a pdf? What is Pr(Y=12) or Pr(Y=.25)?
• How to simulate from this? E.g., runif in R! (pseudo-random generator with a seed
number as starting point)
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Another Example: Bernoulli Distribution

• Characteristics about the DGP that generates Yi:
• Yi has 2 mutually exclusive outcomes (say {0, 1})
• Both outcomes are exhaustive (Ω = {0, 1})

• Example? How can it go wrong?

• Pr(Yi = 1|πi) = πi, Pr(Yi = 0|πi) = 1− πi (Why is this a pmf?)
• The parameter πi happens to be interpretable as a probability
• Thus, Pr(Yi = y|πi) = πyi (1− πi)

1−y
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Expected value of Bernoulli (analytically)

• What will happen on average?

Expected value:

E(Y) =
∑

y∈{0,1}

yP(y)

= 0Pr(0) + 1Pr(1)
= π
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Expected value of Bernoulli (analytically)

• Expected value of function g(Y)

E[g(Y)] =
∑
y∈Ω

g(y)P(y)

or

E[g(Y)] =
∫ ∞

−∞
g(y)P(y)dy

For example,

E[Y2] =
∑

y∈{0,1}

y2P(y)

= 02Pr(0) + 12Pr(1)
= π
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Variance of Bernoulli (analytically)

• By definition (first equation) and some algebra we get

Var(Y) = E[(Y− E(Y))2]
= E(Y2)− E(Y)2

= π − π2

= π(1− π)

• For which value of π would you expect to get the largest variance?
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Expectation and Variance of Bernoulli (simulated)

• Draw u from a uniform density on the interval [0,1]
• Set π to particular value
• Set y = 1 if u < π and y = 0 otherwise

# Bernoulli Example in R: Simulate E(Y) & Var(Y)

sims <- 1000 # no. of simulations
pi <- .2 # set parameter
u <- runif(sims) # draw from uniform pdf
y <- as.integer(u<pi) # compute bernoulli trials
head(y) # a peek at the results
mean(y) # calculate simulated mean
var(y) # calculate simulated variance
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Binomial Distribution

First principles:

• N Bernoulli trials y1, · · · , yN
• Trials are independent
• Trials are identically distributed, i.e., all are Bernoulli with the same πi = π

• Only the count of those outcomes is observed, i.e., Y =
∑N

i=1 yi (Example?)

The pmf is:
P(Y = y|π) =

(
N
y

)
πy(1− π)N−y

• What do we get for N = 1?
•
(N
y
)
= N!

y!(N−y)! because order is not important, i.e., both (101) and (011) yield y = 2.
• πy is a product taken due to iid (independent trials and πi = π)
• One can show that: Mean E(Y) = Nπ; Variance V(Y) = Nπ(1− π)
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How to simulate from a Binomial Distribution with parameter π and index N?

• Simulate N Bernoulli trials with parameter π
• Add them up
• Draw samples directly from Binomial distribution using rbinom

# Simulation of Binomial as sum of 5 independent
# Bernoulli RVs using rbinom

y <- rbinom(n=10000, size=5, prob=.2) # draw from binomial
head(y) # print result - first peek
mean(y) # calculate simulated mean
var(y) # calculate simulated var
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Relaxing the iid assumption

What if iid (independent identically distributed) assumption is unrealistic?

• Relax identical distribution assumption (πi = π) such that π is a random variable
rather than being fixed, thus we need to find P(π) and π falls in the interval [0,1].

• Take Beta distribution, i.e., P = B(γ), which can be very flexible (unimodal, bimodal,
skewed). Also used to model proportions.

• One can show that relaxing the independence assumption among the binary random
variables (under some conditions) one also gets the extended Beta-Binomial
distribution Pebb.

• Combine (aka compound) Beta and Binomial distributions to get extended Beta-Binomial
distribution Pebb(yi, π|γ). γ represents the degree to which π varies across the
unobserved realizations of the binary random variables. For γ = 0 one arrives at the
binomial distribution again.

• Example: Lauderdale, Benjamin E. (2012). Compound Poisson-Gamma Regression
Models for Dollar Outcomes That Are Sometimes Zero. Political Analysis, 20(3),
387–399.
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Multinomial Distribution

First Principle:

• Characteristics about the DGP that generates
Y = (y1, . . . , yk)′ ∼ Multinomial(n, π1, . . . , πk):

• n repeated, independent trials. Each trial has k mutually exclusive and exhaustive
outcomes (say {1, . . . , k})

• Probability that outcome j occurs is πj ∈ [0,1] and
∑k

j=1 πj = 1
• Let yj be a random variable counting how often outcome j occurs, thus

∑k
j=1 yj = n.

• The pmf is:

P((y1, y2, . . . , yk)′) = P(y|n, π1, . . . , πk) =
n!

y1!y2! . . . , yk!
πy11 π

y2
2 · · ·πykk

• Example? How can it go wrong? What happens for k = 2?

• E(Yj) = nπj and Var(yj) = nπj(1− πj)
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Further Univariate Probability Distributions

There are many, many other distributions (and compounds of them) as you can imagine.
Just to name a few ...

• Poisson; Negative binomial for modeling counts - discrete, countably infinite,
nonnegative

• Normal - continuous, unimodal, symmetric, unbounded
• Log-Normal; Gamma - continuous, unimodal, skewed, bounded from below by zero
• Truncated-Normal - continuous, unimodal, symmetric, bounded from below or above
(or both)

• Multinomial for modeling discrete outcomes - discrete, unordered

Remember: Pick (or construct) a probability distribution to define the stochastic
component of your model that best describes the potential values of your outcome
variable (i.e., the sample space).
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