Advanced Quantitative Methods: Probability Theory

Thomas Gschwend | Oliver Rittmann | Viktoriia Semenova
Week 3-2 March 2022

Final Paper

A Word on the Final Paper

- Do you have a coauthor already? (Full rather than draft paper with more than two authors)
- Track-down an article that (1) interests you and (2) has a replication data set available (e.g., AJPS dataverse)
- Recent APSR, AJPS and JoP articles have typically the best quality (and available data sets)
- Be efficient. Avoid collecting your own data for this paper.
- The grade of the paper is independent from the statistical model you use.
- No Compound Poisson-Gamma Regression Models and the like are necessary
- You need to make a substantive point using advanced statistical methods (i.e., no OLS!)
- In Homework 4 (?) you need to provide an abstract of your paper project. Come and talk to me about this before that, i.e. no later than week 6.

Introduction

What should you take home from this class today?

- You will learn that pdf's are your friends. They allow you to calculate probability statements for anything you want.
- We will also learn to appreciate simulation as a tool to calculate such probability statements.

Probability as a Model of Uncertainty

Probability Theory - Why should we care?

- Probability theory important tool to translate political science theories into appropriate statistical models.
- Three steps to generate a statistical model:
(1) What is the data-generating process (DGP)?
(2) Build an appropriate probability model that reflects the assumed DGP including assumptions of how Y is distributed (i.e., stochastic component)
(3) Come-up with systematic component including a parameterization of the stuff that gets estimated and a theory of inference to derive statistical model
- Thus, a generalized notation for most statistical models is:

$$
\begin{array}{ll}
Y_{i} \sim f\left(y_{i} \mid \theta_{i}, \alpha\right) & \text { stochastic } \\
\theta_{i}=g\left(X_{i}, \beta\right) & \text { systematic }
\end{array}
$$

- Estimation uncertainty: Lack of knowledge about parameters (β, α).
- Fundamental uncertainty: Represented by the stochastic component.
- No need to fit data to existing but inappropriate statistical model

Probability - a model of uncertainty

- $\operatorname{Pr}(y \mid M)=\operatorname{Pr}($ data \mid Model $)$, where $M=(f, g, X, \beta, \alpha)$
- Probabilities are real numbers $\operatorname{Pr}(A)$ assigned to every event A of the sample space Ω. The sample space can be discrete (e.g., vote-choice), countably infinite (e.g., no. of conflicts), or assumed to be continuous (e.g., duration of governments).
- The sample space is relevant to us because we need to chose the stochastic component of our model such that it describes the sample space.
- Three axioms:
(a) For every $A \in \Omega$ holds $\operatorname{Pr}(A) \geq 0$: Probabilities are non-negative
(b) $\operatorname{Pr}(\Omega)=1$: The total probability is 1
(c) If A_{1}, \ldots, A_{k} are mutually exclusive events, then

$$
\operatorname{Pr}\left(A_{1} \cup \cdots \cup A_{k}\right)=\operatorname{Pr}\left(A_{1}\right)+\cdots+\operatorname{Pr}\left(A_{k}\right)
$$

Definition of Probabilities

- Conditional probability: the probability that event B occurs given that we know A:

$$
\operatorname{Pr}(B \mid A)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(A)}
$$

- Independent events (or joint probability of stochastically independent RVs):

$$
\operatorname{Pr}(A, B)=\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B)
$$

- Conditionally independent events:

$$
\operatorname{Pr}(A, B \mid C)=\operatorname{Pr}(A \cap B \mid C)=\operatorname{Pr}(A \mid C) \operatorname{Pr}(B \mid C)
$$

- Law of Total Probability: If A_{1}, \ldots, A_{k} are a disjoint partition of the sample space Ω, then

$$
\operatorname{Pr}(B)=\sum_{i=1}^{n} \operatorname{Pr}\left(B \mid A_{i}\right) \operatorname{Pr}\left(A_{i}\right)
$$

How to solve probability problems?

- If you like math and the problem is not too hard, do this analytically (e.g., Pr(rolling a 1 or rolling a 2) $=$?)
- You can also use simulation to solve probability problems (e.g., take 1000 draws with replacement, assign 1 or 0 , sum up, divide by 1000, voila!). The result of the simulation will be close to the analytical result. In fact, take more draws to get even closer.
- Research shows that students get it right more often when using simulation rather than math.

The Birthday Problem

Given a room with 24 randomly selected students, what is the probability that at least two have the same birthday?

The Birthday Problem

Given a room with 24 randomly selected students, what is the probability that at least two have the same birthday?
sims <- 1000
students <- 24
days <- seq(1, 365, 1)
sameday <- 0
for (i in 1:sims)\{
room <- sample(days, students, replace = TRUE)
if (length(unique (room)) < students)
sameday <- sameday+1
\}
cat("Pr(>=2 students same birthday):", sameday/sims, "\n")

Probability Density Functions

What is a Probability Density?

A probability density (probability mass) is a function, $P(Y)$, such that

1. Sum over all possible Y is 1

- If Y discrete: $\sum_{Y} P(Y)=1$ (pmf)
- If Y continuos: $\int_{-\infty}^{\infty} P(Y) d Y=1$ (pdf)

2. $P(Y) \geq 0$ for every Y.

The cool thing about probability densities is that once you have it we can characterize all possible outcomes with it. For instance, we can compute probability statements.

- $\operatorname{Pr}(a \leq Y \leq b)=\int_{a}^{b} P(Y) d Y$
- $\operatorname{Pr}(Y=y)=P(Y=y)$ if Y discrete
- $\operatorname{Pr}(Y=y)=0$ if Y continuous

Examples: Uniform Density on $[0,1]$

The DGP of Y_{i} is such that

- Y_{i} falls within the interval $[0,1]$ with probability 1: $\int_{0}^{1} P(y) d y=1$
- $\operatorname{Pr}(Y \in(a, b))=\operatorname{Pr}(Y \in(c, d))$ if $a<b, c<d$, and $b-a=d-c$.
- Why is it a pdf? What is $\operatorname{Pr}(\mathrm{Y}=12)$ or $\operatorname{Pr}(\mathrm{Y}=.25)$?
- How to simulate from this? E.g., runif in R! (pseudo-random generator with a seed number as starting point)

Another Example: Bernoulli Distribution

- Characteristics about the DGP that generates Y_{i} :
- Y_{i} has 2 mutually exclusive outcomes (say $\{0,1\}$)
- Both outcomes are exhaustive $(\Omega=\{0,1\})$
- Example? How can it go wrong?
- $\operatorname{Pr}\left(Y_{i}=1 \mid \pi_{i}\right)=\pi_{i}, \operatorname{Pr}\left(Y_{i}=0 \mid \pi_{i}\right)=1-\pi_{i}($ Why is this a pmf?)
- The parameter π_{i} happens to be interpretable as a probability
- Thus, $\operatorname{Pr}\left(Y_{i}=y \mid \pi_{i}\right)=\pi_{i}^{y}\left(1-\pi_{i}\right)^{1-y}$

Expected value of Bernoulli (analytically)

-What will happen on average?
Expected value:

$$
\begin{aligned}
E(Y) & =\sum_{y \in\{0,1\}} y P(y) \\
& =0 \operatorname{Pr}(0)+1 \operatorname{Pr}(1) \\
& =\pi
\end{aligned}
$$

Expected value of Bernoulli (analytically)

- Expected value of function $g(Y)$

$$
E[g(Y)]=\sum_{y \in \Omega} g(y) P(y)
$$

or

$$
E[g(Y)]=\int_{-\infty}^{\infty} g(y) P(y) d y
$$

For example,

$$
\begin{aligned}
E\left[Y^{2}\right] & =\sum_{y \in\{0,1\}} y^{2} P(y) \\
& =0^{2} \operatorname{Pr}(0)+1^{2} \operatorname{Pr}(1) \\
& =\pi
\end{aligned}
$$

Variance of Bernoulli (analytically)

- By definition (first equation) and some algebra we get

$$
\begin{aligned}
\operatorname{Var}(Y) & =E\left[(Y-E(Y))^{2}\right] \\
& =E\left(Y^{2}\right)-E(Y)^{2} \\
& =\pi-\pi^{2} \\
& =\pi(1-\pi)
\end{aligned}
$$

- For which value of π would you expect to get the largest variance?

Expectation and Variance of Bernoulli (simulated)

- Draw u from a uniform density on the interval [0,1]
- Set π to particular value
- Set $y=1$ if $u<\pi$ and $y=0$ otherwise

```
# Bernoulli Example in R: Simulate E(Y) & Var(Y)
sims <- 1000
pi <- .2
u <- runif(sims)
y <- as.integer(u<pi)
head(y)
mean(y)
var(y)
```

\# no. of simulations
\# set parameter
\# draw from uniform pdf
\# compute bernoulli trials
\# a peek at the results
\# calculate simulated mean
\# calculate simulated variance

Binomial Distribution

First principles:

- N Bernoulli trials y_{1}, \cdots, y_{N}
- Trials are independent
- Trials are identically distributed, i.e., all are Bernoulli with the same $\pi_{i}=\pi$
- Only the count of those outcomes is observed, i.e., $Y=\sum_{i=1}^{N} y_{i}$ (Example?)

The pmf is:

$$
P(Y=y \mid \pi)=\binom{N}{y} \pi^{y}(1-\pi)^{N-y}
$$

- What do we get for $N=1$?
- $\binom{N}{y}=\frac{N!}{y!(N-y)!}$ because order is not important, i.e., both (101) and (011) yield $y=2$.
- π^{y} is a product taken due to iid (independent trials and $\pi_{i}=\pi$)
- One can show that: Mean $E(Y)=N \pi$; Variance $V(Y)=N \pi(1-\pi)$

How to simulate from a Binomial Distribution with parameter π and index N ?

- Simulate N Bernoulli trials with parameter π
- Add them up
- Draw samples directly from Binomial distribution using rbinom
\# Simulation of Binomial as sum of 5 independent
\# Bernoulli RVs using rbinom
y <- rbinom(n=10000, size=5, prob=.2) \# draw from binomial
head (y)
\# print result - first peek
mean(y) \# calculate simulated mean
$\operatorname{var}(y) \quad$ \# calculate simulated var

Relaxing the iid assumption

What if iid (independent identically distributed) assumption is unrealistic?

- Relax identical distribution assumption $\left(\pi_{i}=\pi\right)$ such that π is a random variable rather than being fixed, thus we need to find $P(\pi)$ and π falls in the interval $[0,1]$.
- Take Beta distribution, i.e., $P=B(\gamma)$, which can be very flexible (unimodal, bimodal, skewed). Also used to model proportions.
- One can show that relaxing the independence assumption among the binary random variables (under some conditions) one also gets the extended Beta-Binomial distribution Pebb.
- Combine (aka compound) Beta and Binomial distributions to get extended Beta-Binomial distribution $P_{e b b}\left(y_{i}, \pi \mid \gamma\right)$. γ represents the degree to which π varies across the unobserved realizations of the binary random variables. For $\gamma=0$ one arrives at the binomial distribution again.
- Example: Lauderdale, Benjamin E. (2012). Compound Poisson-Gamma Regression Models for Dollar Outcomes That Are Sometimes Zero. Political Analysis, 20(3), 387-399.

Multinomial Distribution

First Principle:

- Characteristics about the DGP that generates $Y=\left(y_{1}, \ldots, y_{k}\right)^{\prime} \sim \operatorname{Multinomial}\left(n, \pi_{1}, \ldots, \pi_{k}\right)$:
- n repeated, independent trials. Each trial has k mutually exclusive and exhaustive outcomes (say $\{1, \ldots, k\}$)
- Probability that outcome j occurs is $\pi_{j} \in[0,1]$ and $\sum_{j=1}^{k} \pi_{j}=1$
- Let y_{j} be a random variable counting how often outcome j occurs, thus $\sum_{j=1}^{k} y_{j}=n$.
- The pmf is:

$$
P\left(\left(y_{1}, y_{2}, \ldots, y_{k}\right)^{\prime}\right)=P\left(y \mid n, \pi_{1}, \ldots, \pi_{k}\right)=\frac{n!}{y_{1}!y_{2}!\ldots, y_{k}!} \pi_{1}^{y_{1}} \pi_{2}^{y_{2}} \cdots \pi_{k}^{y_{k}}
$$

- Example? How can it go wrong? What happens for $k=2$?
- $E\left(Y_{j}\right)=n \pi_{j}$ and $\operatorname{Var}\left(y_{j}\right)=n \pi_{j}\left(1-\pi_{j}\right)$

Further Univariate Probability Distributions

There are many, many other distributions (and compounds of them) as you can imagine. Just to name a few ...

- Poisson; Negative binomial for modeling counts - discrete, countably infinite, nonnegative
- Normal - continuous, unimodal, symmetric, unbounded
- Log-Normal; Gamma - continuous, unimodal, skewed, bounded from below by zero
- Truncated-Normal - continuous, unimodal, symmetric, bounded from below or above (or both)
- Multinomial for modeling discrete outcomes - discrete, unordered

Remember: Pick (or construct) a probability distribution to define the stochastic component of your model that best describes the potential values of your outcome variable (i.e., the sample space).

