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Introduction



What should you take home from this class today?

• Matrices are your friends
• You will learn to get OLS estimates without actually running a regression command
in R.
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OLS Model



Some Definitions and Notation

• Suppose we have the following multiple regression model with k+ 1 parameters (but
k independent variables) and i = 1, · · · ,n observations,

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ϵi

• For every observation i the relationship between values of the dependent variable yi
and the corresponding values on the covariates xi1, xi2, · · · , xik can be written as:

y1 = β0 + β1x11 + β2x12 + · · ·+ βkx1k + ϵ1

y2 = β0 + β1x21 + β2x22 + · · ·+ βkx2k + ϵ2

y3 = β0 + β1x31 + β2x32 + · · ·+ βkx3k + ϵ3
... =

...
yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ϵi
... =

...
yn = β0 + β1xn1 + β2xn2 + · · ·+ βkxnk + ϵn
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Some Definitions and Notation

• The system of n equations can be elegantly condensed as follows:

y1
y2
...
yi
...
yn


[n×1]

=



1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
...

...
... · · ·

...
1 xi1 xi2 · · · xik
...

...
... · · ·

...
1 xn1 xn2 · · · xnk


[n×(k+1)]



β0
β1
...
βi
...
βk


[(k+1)×1]

+



ϵ1
ϵ2
...
ϵi
...
ϵn


[n×1]

• This can be rewritten as
y = Xβ + ϵ

• The model has a systematic component (Xβ) and a stochastic component (ϵ)
• We would like to obtain estimates of the population parameters (β), which we
denote as β̂

AQM 2022 | OLS in Matrix Form 4



Derivation of β̂OLS

• We derive our first estimator β̂OLS, i.e., we need to find a β̂ that minimizes the sum of
squared residuals (what we used to write as

∑n
i=1 e2i in scalar notation).

• In matrix notation the vector (dimension?) of the residuals, e, is given as

e = y− Xβ̂

• Thus, the sum of squared residuals (RSS) is e′e (dimension?)

(e1, e2, · · · , en)


e1
e2
...
en

 = e1 · e1 + e2 · e2 + · · ·+ en · en =
n∑
i=1

e2i
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Derivation of β̂OLS

• Using our new matrix notation, we can write the sum of squared residuals as:

e′e = (y− Xβ̂)′(y− Xβ̂)
= y′y− β̂′X′y− y′Xβ̂ + β̂′X′Xβ̂
= y′y− 2β̂′X′y+ β̂′X′Xβ̂

• In order to minimize the above equation, we need to take the derivative with respect
to β̂ (first order condition). Thus,

∂e′e
∂β

= −2X′y+ 2X′Xβ̂ = 0 (dimension?)
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Derivation of β̂OLS

• Ok, lets work with β̂ that fulfills ∂e′e
∂β = −2X′y+ 2X′Xβ̂ = 0

• To check wether this is in fact a minimum, we need to take the derivative of the
above with respect to β̂ again (second order condition). This gives us

∂2e′e
∂β∂β′ = 2X′X > 0 if rank(X) = k+1

If rank(X) = k+1, i.e., the k independent variables are not linear dependent, then X′X
is positive definite (a′(X′X)a > 0 for all n× 1 vectors a ̸= 0).

• Thus, if we find such a β̂, then it minimizes the sum of squared residuals.
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Derivation of β̂OLS

• How to find such a β̂? Start with the first order condition
∂e′e
∂β

= −2X′y+ 2X′Xβ̂ = 0

• Note that (X′X) is symmetric. Rearranging terms, we get the so-called normal
equations (why plural?):

(X′X)β̂ = X′y
• Recall that (X′X) and X′y is known, while β̂ is unknown. Assuming (X′X)−1 exists,
pre-multiplying both sides by the inverse yields

β̂ = (X′X)−1X′y

• Note that we have not had to make any assumption so far (in addition to the
existence of (X′X)−1).

• Since the OLS estimators β̂ = β̂OLS are a linear combination of an existing random
variable (y), they themselves are random variables.
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The Gauss-Markov Assumptions

In order to derive the expected value and the variance of β̂OLS we need some
assumptions

1. y = Xβ + ϵ, i.e., the relationship between X and y is linear in the parameters.
2. X is of full rank, i.e. there is no perfect collinearity among the covariates.
3. E[ϵ|X] = 0, i.e. the disturbances average out to 0 for any value of X (zero conditional
mean), thus E(y) = Xβ (i.e. on average we get the mean right).

4. Var(ϵ|X) = E[ϵϵ′|X] = σ2In, i.e. the variance of the disturbances must be constant
(homoskedasticity) and cannot be correlated across observations (no serial- or
autocorrelation).

5. ϵ|X ∼ N(0, σ2In) (actually not needed for Gauss-Markov Theorem but for hypothesis
testing).
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The Gauss-Markov Theorem

There will be no other linear, unbiased estimator of β coefficients that has smaller
sampling variance. Thus, β̂OLS will be BLUE (Best Linear Unbiased Estimator).

Proof that β̂ is an unbiased estimator of β.

β̂ = (X′X)−1X′y
= (X′X)−1X′(Xβ + ϵ)

β̂ = β + (X′X)−1X′ϵ

Taking the expectation conditional on X gives

E[β̂|X] = β + (X′X)−1X′E[ϵ|X]
= β + (X′X)−1X′0
= β
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The Variance-Covariance Matrix of OLS estimator β̂

We can derive the variance-covariance matrix of the OLS estimator β̂ (i.e., the “variance”
of a multidimensional estimator) conditional on X as

Var(β̂|X) = E[(β̂ − E(β̂))(β̂ − E(β̂))′]
= E[(β̂ − β)(β̂ − β)′]

= E[(X′X)−1X′ϵ)(X′X)−1X′ϵ)′]
= E[(X′X)−1X′ϵϵ′X(X′X)−1]
= (X′X)−1X′E[ϵϵ′]X(X′X)−1

= (X′X)−1X′σ2InX(X′X)−1

= σ2In(X′X)−1(X′X)(X′X)−1

= σ2(X′X)−1
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The Variance-Covariance Matrix of OLS estimator β̂

• We observe (X′X)−1 but we cannot observe σ2. One can show that

σ̂2(= s2) = e′e
n− (k + 1)

is an unbiased estimator of σ2. The positive square root of it (σ̂ or s) is called the
standard error of the regression (or root mean squared error) and is an estimator of
the standard deviation of the regression error term.

• The term n− (k + 1) is the difference of the number of observations and the
number of estimated parameters and is called degrees of freedom (df).

• Note: As n increases σ̂2 decreases, while as k increases σ̂2 increases
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The Variance-Covariance Matrix of OLS estimator β̂

• Thus, the (symmetric) variance-covariance matrix Var(β̂|X) =

E[(β̂ − β)(β̂ − β)′] =


var(β̂0) cov(β̂0, β̂1) · · · cov(β̂0, β̂k)

cov(β̂1, β̂0) var(β̂1) · · · cov(β̂1, β̂k)
...

...
...

...
cov(β̂k, β̂0) cov(β̂k, β̂1) · · · var(β̂k)


• …can be estimated through

V̂ar(β̂|X) = σ̂2(X′X)−1 = e′e
n− (k + 1) (X

′X)−1

• As you can see, the standard errors of β̂ are given by the square root of the elements
along the main diagonal of the above (symmetric) matrix, i.e.

se(β̂i) =
√
v̂ar(β̂i)
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Hypothesis Testing

In order to test inferences about β̂OLS we need a distributional assumption.

• We assumed that ϵ|X ∼ N(0, σ2In), i.e., the disturbances are distributed multivariate
normal.

• We also have seen that β̂OLS = β + (X′X)−1X′ϵ, i.e., the OLS estimator is just a linear
function of the disturbances.

• Therefore, we can also say that β̂OLS is also distributed multivariate normal, i.e.,

β̂OLS ∼ N[β, σ2(X′X)−1]

This allows us normal hypothesis test, we are familiar with.
• This means that the variance of β̂j (conditional on X) can be computed by multiplying
σ̂2(= σ̂2j , because of homoskedasticity assumption) by the jth diagonal element of
matrix (X′X)−1).
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White-Huber Standard Errors



Robust (White-Huber) Standard Errors

• Recall that we derived the variance-covariance matrix of the OLS estimator β̂
conditional on X as

Var(β̂|X) = E[(β̂ − β)(β̂ − β)′]

= (X′X)−1X′E[ϵϵ′]X(X′X)−1

= (X′X)−1(X′ΩX)(X′X)−1

This also helps us to understand the so-called Beck and Katz panel-corrected
standard errors in the context of cross-sectional time-series models.

• Note that we can compute β̂ without making any distributional assumption about
the disturbances (β̂OLS = (X′X)−1X′y).

• However, for some results of the Gauss-Markov Theorem (such as the sampling
distribution of β̂OLS) we need distributional assumptions.

• The assumption of homoskedasticity is very strong and does often not hold. The
variance is often not the same for all observations. Some observations are better to
predict than others.
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Robust (White-Huber) Standard Errors

If we detect (or suspect) heteroskedastic error variances (σ2i instead of σ2) there are two
basic strategies to deal with this

1. Model the non-constant variance to extract substantive information from it, e.g.,
Weighted Least Squares (WLS - using a weight that is proportional to the variance) or
parameterize the variance (heteroskedastic regression, multi-level models) and
estimate it. In order to do this, we need to assume that the variance is correctly
specified.

2. Use a statistical fix to treat non-constant variance as nuisance (e.g., robust standard
errors)

Var(β̂|X) = E[(β̂ − β)(β̂ − β)′]

= (X′X)−1(X′E[ϵϵ′]X)(X′X)−1

V̂ar(β̂|X) = (X′X)−1(X′Ω̂X)(X′X)−1
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Robust (White-Huber) Standard Errors

• Use a statistical fix to treat non-constant variance as nuisance (e.g., robust standard
errors)

Var(β̂|X) = (X′X)−1(X′E[ϵϵ′]X)(X′X)−1

V̂ar(β̂|X) = (X′X)−1(X′Ω̂X)(X′X)−1

• White (1980) showed that X′Ω̂X with Ω̂ = diag(ee′), a diagonal matrix with the
squared residuals as non-zero elements, is a consistent (but not unbiased)
variance-covariance matrix estimator of X′E[ϵϵ′]X, also called
Heteroskedastic-Consistent (HC) estimator.

• One way to modify HC is to implement a degrees of freedom correction similar to the
one used to obtain unbiased estimates of σ2. This strategy to get White robust
standard errors yields the following so-called HC1 variance-covariance matrix
estimator n

n−(k + 1)X
′Ω̂X for X′E[ϵϵ′]X, that is, as with HC, only appropriate in large

samples.
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What are robust (White-Huber) standard errors good for?

• In R one can implement HC1 using diag(diag(·)) (turns vector into square
diagonal matrix) to implement Ω̂ directly or load library(sandwich).

• King and Roberts (2015) argue that if robust and classical standard error estimates
differ we learned that the model is misspecified, i.e. that some estimates drawn from
it will be biased. And this cannot get fixed by merely using robust standard errors!

• Thus, robust standard errors are some sort of a weak specification test only. If
standard errors diverge this indicates model misspecification. If not, we do not know!

• Take a look at: King, Gary, und Margaret E. Roberts. 2015. “How Robust Standard
Errors Expose Methodological Problems They Do Not Fix”. Political Analysis 23,
159–179. (It is on ILIAS!)
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