

Advanced Quantitative Methods: Introduction

Thomas Gschwend | Oliver Rittmann | Viktoriia Semenova Week 1 - 16 February 2022 Welcome!

- M.A. & GESS students interested in learning tools to develop statistical models
- Methods sequence in the political science graduate program:
 - 1. M.A.: Quantitative Methods (last semester), required
 - 2. M.A.: Advanced Quantitative Methods (this semester), optional
 - 3. CDSS: additional advanced courses focusing on specific techniques

- Foundation of statistical inference: Using the facts you have to learn about the facts you don't have
- Focus on maximum likelihood theory of inference
- Programming and statistical simulation as practical tools
- Many specific methods & robustness tests
- · Learn how to fine-tune existing methods or develop new ones

General Requirements

- Learning in this class is a collective experience. You need to be prepared. Everyone is counting on you!
- Weekly readings: Read slower, take notes. Read by keeping a running list of symbols, equations, and their meaning. Skip no equation! Work in groups to sort out remaining issues.
- Prepare and postpare lecture notes
 - Interrupt me as often as necessary!
 - Assume you are the smartest person in the class, and you, eventually, will be.
- Six homework assignments: Work in groups!
- Final draft paper (coauthored) + replication material (full paper for more than two co-authors). Paper should be potentially publishable. Consult with me early on about the framing of your contribution, and how to construct a winning argument.

Final draft paper: How to find a topic?

- Hint: start with replicating an existing article.
- Do not replicate the entire article. No replication report. Instead develop your own argument!
- Replicate important aspect of article. Why is it important? Not because of the authors say so but because *you* say so!
- You have to make a case that this is important. How do you know? We are writing for an audience. You have to convince others that this is important.
- Even if authors say that the paper is about *X* you can say we should think about *C* because it is a more interesting question.
- How to cast an article (big picture) and do all the little details of squaring the terms to come up with the likelihood? Don't loose sight of either side.
- Write down your model!
- Don't trust that the model assumptions are true. Test them!

- We could teach you the latest and greatest methods, but by the time you graduate ...
 - ... they will be old
 - ... or *you* will be old
- We could teach you several years of calculus, linear algebra, mathematical statistics, probability theory, and then start with data analysis. This works great, but not if you wanna be a social scientist.
- Instead, we teach you the *fundamentals*, the underlying *theory of inference*, from which most statistical models are developed. Then we do examples in great detail. Math gets introduced in great depth, but only when needed.

What is Maximum Likelihood? - Basic Intuition

• Suppose: $Y \sim N(\mu, \sigma^2)$

What is Maximum Likelihood? - Basic Intuition

- Suppose: Y \sim N(μ, σ^2)
 - $\cdot\,$ Thus, we have a normal distribution with two parameters:

$$E[Y] = \mu$$

/ar(Y) = σ^2

- We have some observations on Y and we want to estimate μ and σ^2
- Suppose we have made the following observations (say, government approval):

$$Y = \{54, 53, 49, 61, 58\}$$

- Intuitively we wonder about the likelihood of getting these data points if we assume a normal distribution ...
 - ... with $\mu = 100?$
 - \cdot ... with $\mu =$ 55?
- The basic idea behind *maximum likelihood* is to find the estimate for the parameter values of our chosen (assumed) distribution that *maximizes* the *likelihood* of observing the data we have.

US Presidential Elections (1948-2004)

How to fit a line to a scatterplot?

US Presidential Elections (1948-2004)

What is this?

What is this?

- Yes, now you know. Every model is an abstraction.
- Are models ever true or false?
- Are models ever realistic or not?

AQM 2022 | Introduction models ever useful or not?

• Explanatory variables (aka "covariates", "independent" or "exogenous" variables) are combined into a *design matrix X*

 $X = (1, x_1, \cdots, x_j, \cdots, x_k)$ for $x_j = (x_{1j} \cdots x_{nj})'$. X is $n \times (k+1)$

- n: Number of observations
- (k+1): Number of parameters (No. of explanatory variables + 1)
- Dependent (or "outcome") variable: Y is $n \times 1$
- Y_i is a random variable (before we can observe it)
- y_i is a number (after we can observe it)

Linear Regression Notation

• Standard Version:

$$Y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{k}x_{ik} + \epsilon_{i}$$

$$= \beta_{0} + \sum_{j=1}^{k} \beta_{j}x_{ji} + \epsilon_{i}$$

$$= (1, x_{i1}, \dots, x_{ik}) \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{k} \end{pmatrix} + \epsilon_{i}$$

$$= X_{i}\beta + \epsilon_{i} \qquad (systematic + stochastic)$$

$$\epsilon_{i} \sim f_{N}(e_{i}|0, \sigma^{2})$$

• Alternative Version:

$$Y_i \sim f_N(y_i|\mu_i, \sigma^2)$$
 stochastic
 $\mu_i = X_i\beta$ systematic

Recall that we can generalize that and write any statistical model as

 $Y_i \sim f(y_i|\theta_i, \alpha)$ stochastic $\theta_i = g(X_i, \beta)$ systematic

- 1. Estimation Uncertainty: Uncertainty about what the true parameters β and α of the model are. Think of it as caused by small samples. Vanishes if *N* gets larger.
- 2. Fundamental Uncertainty: Represented by stochastic component of the model. Exists no matter what (even if model is correct and we would have infinite many observations) because of inherent randomness of the world.

Quiz

Assume the following model:

$$Y_i \sim N(\mu, \sigma_i^2)$$

 $\sigma_i^2 = exp(X_i\beta)$

Let x be a measure whether the respondent is employed (1 = yes, 0 = otherwise),

X = (1, x) and Y be the government's perceived job performance. This model is useful ...

- 1. ...for nothing, the model is internally inconsistent.
- 2. ...to test whether unemployed people have more consensus about the government's job performance than employed people.
- 3. ...to test whether the variance is non-negative.
- 4. ...to test whether the government's job performance is higher for employed people.